Paparazzi UAS v7.0_unstable
Paparazzi is a free software Unmanned Aircraft System.
All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Modules Pages
ins_ekf2.cpp
Go to the documentation of this file.
1/*
2 * Copyright (C) 2022 Freek van Tienen <freek.v.tienen@gmail.com>
3 *
4 * This file is part of paparazzi.
5 *
6 * paparazzi is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2, or (at your option)
9 * any later version.
10 *
11 * paparazzi is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with paparazzi; see the file COPYING. If not, write to
18 * the Free Software Foundation, 59 Temple Place - Suite 330,
19 * Boston, MA 02111-1307, USA.
20 */
21
31#include "modules/core/abi.h"
32#include "stabilization/stabilization_attitude.h"
33#include "generated/airframe.h"
34#include "generated/flight_plan.h"
35#include "EKF/ekf.h"
36#include "math/pprz_isa.h"
38#include "mcu_periph/sys_time.h"
39#include "autopilot.h"
40
42#if defined SITL && USE_NPS
43#include "nps_autopilot.h"
44#include <stdio.h>
45#endif
46
48#ifndef USE_INS_NAV_INIT
49#define USE_INS_NAV_INIT TRUE
50#endif
51
53#ifndef INS_EKF2_MAX_REL_LENGTH_ERROR
54#define INS_EKF2_MAX_REL_LENGTH_ERROR 0.2 // Factor which gets multiplied by the reference distance
55#endif
56
58#if INS_EKF2_OPTITRACK
59#ifndef INS_EKF2_FUSION_MODE
60#define INS_EKF2_FUSION_MODE (MASK_USE_EVPOS | MASK_USE_EVVEL | MASK_USE_EVYAW)
61#endif
62#ifndef INS_EKF2_VDIST_SENSOR_TYPE
63#define INS_EKF2_VDIST_SENSOR_TYPE VDIST_SENSOR_EV
64#endif
65#endif
66
68#ifndef INS_EKF2_FUSION_MODE
69#define INS_EKF2_FUSION_MODE (MASK_USE_GPS)
70#endif
72
73
74#ifndef INS_EKF2_VDIST_SENSOR_TYPE
75#define INS_EKF2_VDIST_SENSOR_TYPE VDIST_SENSOR_BARO
76#endif
78
79
80#ifndef INS_EKF2_GPS_CHECK_MASK
81#define INS_EKF2_GPS_CHECK_MASK 21 // (MASK_GPS_NSATS | MASK_GPS_HACC | MASK_GPS_SACC)
82#endif
84
85
86#ifndef INS_EKF2_SONAR_MIN_RANGE
87#define INS_EKF2_SONAR_MIN_RANGE 0.001
88#endif
90
91
92#ifndef INS_EKF2_SONAR_MAX_RANGE
93#define INS_EKF2_SONAR_MAX_RANGE 4
94#endif
96
97
98#ifndef INS_EKF2_RANGE_MAIN_AGL
99#define INS_EKF2_RANGE_MAIN_AGL 1
100#endif
102
103
104#ifndef INS_EKF2_BARO_ID
105#if USE_BARO_BOARD
106#define INS_EKF2_BARO_ID BARO_BOARD_SENDER_ID
107#else
108#define INS_EKF2_BARO_ID ABI_BROADCAST
109#endif
110#endif
112
113
114#ifndef INS_EKF2_TEMPERATURE_ID
115#define INS_EKF2_TEMPERATURE_ID ABI_BROADCAST
116#endif
118
119
120#ifndef INS_EKF2_AGL_ID
121#define INS_EKF2_AGL_ID ABI_BROADCAST
122#endif
124
125/* default Gyro to use in INS */
126#ifndef INS_EKF2_GYRO_ID
127#define INS_EKF2_GYRO_ID ABI_BROADCAST
128#endif
130
131/* default Accelerometer to use in INS */
132#ifndef INS_EKF2_ACCEL_ID
133#define INS_EKF2_ACCEL_ID ABI_BROADCAST
134#endif
136
137/* default Magnetometer to use in INS */
138#ifndef INS_EKF2_MAG_ID
139#define INS_EKF2_MAG_ID ABI_BROADCAST
140#endif
142
143/* default GPS to use in INS */
144#ifndef INS_EKF2_GPS_ID
145#define INS_EKF2_GPS_ID GPS_MULTI_ID
146#endif
148
149/* default RELPOS to use for heading in INS */
150#ifndef INS_EKF2_RELPOS_ID
151#define INS_EKF2_RELPOS_ID ABI_BROADCAST
152#endif
154
155/* default Optical Flow to use in INS */
156#ifndef INS_EKF2_OF_ID
157#define INS_EKF2_OF_ID ABI_BROADCAST
158#endif
160
161/* IMU X offset from CoG position in meters */
162#ifndef INS_EKF2_IMU_POS_X
163#define INS_EKF2_IMU_POS_X 0
164#endif
166
167/* IMU Y offset from CoG position in meters */
168#ifndef INS_EKF2_IMU_POS_Y
169#define INS_EKF2_IMU_POS_Y 0
170#endif
172
173/* IMU Z offset from CoG position in meters */
174#ifndef INS_EKF2_IMU_POS_Z
175#define INS_EKF2_IMU_POS_Z 0
176#endif
178
179/* GPS X offset from CoG position in meters */
180#ifndef INS_EKF2_GPS_POS_X
181#define INS_EKF2_GPS_POS_X 0
182#endif
184
185/* GPS Y offset from CoG position in meters */
186#ifndef INS_EKF2_GPS_POS_Y
187#define INS_EKF2_GPS_POS_Y 0
188#endif
190
191/* GPS Z offset from CoG position in meters */
192#ifndef INS_EKF2_GPS_POS_Z
193#define INS_EKF2_GPS_POS_Z 0
194#endif
196
197/* Default flow/radar message delay (in ms) */
198#ifndef INS_EKF2_FLOW_SENSOR_DELAY
199#define INS_EKF2_FLOW_SENSOR_DELAY 15
200#endif
202
203/* Default minimum accepted quality (1 to 255) */
204#ifndef INS_EKF2_MIN_FLOW_QUALITY
205#define INS_EKF2_MIN_FLOW_QUALITY 100
206#endif
208
209/* Max flow rate that the sensor can measure (rad/sec) */
210#ifndef INS_EKF2_MAX_FLOW_RATE
211#define INS_EKF2_MAX_FLOW_RATE 200
212#endif
214
215/* Flow sensor X offset from CoG position in meters */
216#ifndef INS_EKF2_FLOW_POS_X
217#define INS_EKF2_FLOW_POS_X 0
218#endif
220
221/* Flow sensor Y offset from CoG position in meters */
222#ifndef INS_EKF2_FLOW_POS_Y
223#define INS_EKF2_FLOW_POS_Y 0
224#endif
226
227/* Flow sensor Z offset from CoG position in meters */
228#ifndef INS_EKF2_FLOW_POS_Z
229#define INS_EKF2_FLOW_POS_Z 0
230#endif
232
233/* Flow sensor noise in rad/sec */
234#ifndef INS_EKF2_FLOW_NOISE
235#define INS_EKF2_FLOW_NOISE 0.03
236#endif
238
239/* Flow sensor noise at qmin in rad/sec */
240#ifndef INS_EKF2_FLOW_NOISE_QMIN
241#define INS_EKF2_FLOW_NOISE_QMIN 0.05
242#endif
244
245/* Flow sensor innovation gate */
246#ifndef INS_EKF2_FLOW_INNOV_GATE
247#define INS_EKF2_FLOW_INNOV_GATE 4
248#endif
250
251/* External vision position noise (m) */
252#ifndef INS_EKF2_EVP_NOISE
253#define INS_EKF2_EVP_NOISE 0.02f
254#endif
256
257/* External vision velocity noise (m/s) */
258#ifndef INS_EKF2_EVV_NOISE
259#define INS_EKF2_EVV_NOISE 0.1f
260#endif
262
263/* External vision angle noise (rad) */
264#ifndef INS_EKF2_EVA_NOISE
265#define INS_EKF2_EVA_NOISE 0.05f
266#endif
268
269/* GPS measurement noise for horizontal velocity (m/s) */
270#ifndef INS_EKF2_GPS_V_NOISE
271#define INS_EKF2_GPS_V_NOISE 0.3f
272#endif
274
275/* GPS measurement position noise (m) */
276#ifndef INS_EKF2_GPS_P_NOISE
277#define INS_EKF2_GPS_P_NOISE 0.5f
278#endif
280
281/* Barometric measurement noise for altitude (m) */
282#ifndef INS_EKF2_BARO_NOISE
283#define INS_EKF2_BARO_NOISE 3.5f
284#endif
286
287/* Maximum allowed distance error for the RTK relative heading measurement (m) */
288#ifndef INS_EKF2_RELHEADING_ERR
289#define INS_EKF2_RELHEADING_ERR 0.2
290#endif
291
292#ifdef INS_EXT_VISION_ROTATION
294#endif
295
296/* All registered ABI events */
307
308/* All ABI callbacks */
309static void baro_cb(uint8_t sender_id, uint32_t stamp, float pressure);
310static void temperature_cb(uint8_t sender_id, float temp);
311static void agl_cb(uint8_t sender_id, uint32_t stamp, float distance);
312static void gyro_int_cb(uint8_t sender_id, uint32_t stamp, struct FloatRates *delta_gyro, uint16_t dt);
313static void accel_int_cb(uint8_t sender_id, uint32_t stamp, struct FloatVect3 *delta_accel, uint16_t dt);
314static void mag_cb(uint8_t sender_id, uint32_t stamp, struct Int32Vect3 *mag);
315static void gps_cb(uint8_t sender_id, uint32_t stamp, struct GpsState *gps_s);
317static void optical_flow_cb(uint8_t sender_id, uint32_t stamp, int32_t flow_x, int32_t flow_y, int32_t flow_der_x, int32_t flow_der_y, float quality, float size_divergence);
319
320/* Static local functions */
322
323/* Static local variables */
324static Ekf ekf;
326struct ekf2_t ekf2;
328#if PERIODIC_TELEMETRY
330
331static void send_ins(struct transport_tx *trans, struct link_device *dev)
332{
333 struct NedCoor_i pos, speed, accel;
334
335 // Get it from the EKF
336 const Vector3f pos_f{ekf.getPosition()};
337 const Vector3f speed_f{ekf.getVelocity()};
338 const Vector3f accel_f{ekf.getVelocityDerivative()};
339
340 // Convert to integer
341 pos.x = POS_BFP_OF_REAL(pos_f(0));
342 pos.y = POS_BFP_OF_REAL(pos_f(1));
343 pos.z = POS_BFP_OF_REAL(pos_f(2));
344 speed.x = SPEED_BFP_OF_REAL(speed_f(0));
345 speed.y = SPEED_BFP_OF_REAL(speed_f(1));
346 speed.z = SPEED_BFP_OF_REAL(speed_f(2));
347 accel.x = ACCEL_BFP_OF_REAL(accel_f(0));
348 accel.y = ACCEL_BFP_OF_REAL(accel_f(1));
349 accel.z = ACCEL_BFP_OF_REAL(accel_f(2));
350
351 // Send the message
353 &pos.x, &pos.y, &pos.z,
354 &speed.x, &speed.y, &speed.z,
355 &accel.x, &accel.y, &accel.z);
356}
357
358static void send_ins_z(struct transport_tx *trans, struct link_device *dev)
359{
360 float baro_z = 0.0f;
361 int32_t pos_z, speed_z, accel_z;
362
363 // Get it from the EKF
364 const Vector3f pos_f{ekf.getPosition()};
365 const Vector3f speed_f{ekf.getVelocity()};
366 const Vector3f accel_f{ekf.getVelocityDerivative()};
367
368 // Convert to integer
371 accel_z = ACCEL_BFP_OF_REAL(accel_f(2));
372
373 // Send the message
375 &baro_z, &pos_z, &speed_z, &accel_z);
376}
377
378static void send_ins_ref(struct transport_tx *trans, struct link_device *dev)
379{
380 float qfe = 101325.0; //TODO: this is qnh not qfe?
381 if (ekf2.ltp_stamp > 0)
385 &ekf2.ltp_def.hmsl, &qfe);
386}
387
388static void send_ins_ekf2(struct transport_tx *trans, struct link_device *dev)
389{
391 uint16_t filter_fault_status = ekf.fault_status().value; // FIXME: 32bit instead of 16bit
392 uint32_t control_mode = ekf.control_status().value;
393 ekf.get_gps_check_status(&gps_check_status);
394 ekf.get_ekf_soln_status(&soln_status);
395
397 float mag, vel, pos, hgt, tas, hagl, flow, beta, mag_decl;
399 ekf.get_innovation_test_status(innov_test_status, mag, vel, pos, hgt, tas, hagl, beta);
400 //ekf.get_flow_innov(&flow);
401 ekf.get_mag_decl_deg(&mag_decl);
402
403 if (ekf.isTerrainEstimateValid()) {
404 terrain_valid = 1;
405 } else {
406 terrain_valid = 0;
407 }
408
409 if (ekf.inertial_dead_reckoning()) {
410 dead_reckoning = 1;
411 } else {
412 dead_reckoning = 0;
413 }
414
417 &innov_test_status, &mag, &vel, &pos, &hgt, &tas, &hagl, &flow, &beta,
419}
420
421static void send_ins_ekf2_ext(struct transport_tx *trans, struct link_device *dev)
422{
423 float gps_drift[3];
424 Vector3f vibe = ekf.getImuVibrationMetrics();
425 bool gps_blocked;
427 ekf.get_gps_drift_metrics(gps_drift, &gps_blocked);
429
432 &vibe(0), &vibe(1), &vibe(2));
433}
434
435static void send_filter_status(struct transport_tx *trans, struct link_device *dev)
436{
438 filter_control_status_u control_mode = ekf.control_status();
439 uint32_t filter_fault_status = ekf.fault_status().value;
441 uint8_t mde = 0;
442
443 // Check the alignment and if GPS is fused
444 if (control_mode.flags.tilt_align && control_mode.flags.yaw_align && (control_mode.flags.gps || control_mode.flags.ev_pos)) {
445 mde = 3;
446 } else if (control_mode.flags.tilt_align && control_mode.flags.yaw_align) {
447 mde = 4;
448 } else {
449 mde = 2;
450 }
451
452 // Check if there is a covariance error
454 mde = 6;
455 }
456
458}
459
460static void send_wind_info_ret(struct transport_tx *trans, struct link_device *dev)
461{
462 float tas;
463 Vector2f wind = ekf.getWindVelocity();
464 uint8_t flags = 0x5;
465 float f_zero = 0;
466
467 ekf.get_true_airspeed(&tas);
468
469 pprz_msg_send_WIND_INFO_RET(trans, dev, AC_ID, &flags, &wind(1), &wind(0), &f_zero, &tas);
470}
471
472static void send_ahrs_bias(struct transport_tx *trans, struct link_device *dev)
473{
474 Vector3f accel_bias = ekf.getAccelBias();
475 Vector3f gyro_bias = ekf.getGyroBias();
476 Vector3f mag_bias = ekf.getMagBias();
477
478 pprz_msg_send_AHRS_BIAS(trans, dev, AC_ID, &accel_bias(0), &accel_bias(1), &accel_bias(2),
479 &gyro_bias(0), &gyro_bias(1), &gyro_bias(2), &mag_bias(0), &mag_bias(1), &mag_bias(2));
480}
481
482static void send_ahrs_quat(struct transport_tx *trans, struct link_device *dev)
483{
484 struct Int32Quat ltp_to_body_quat;
485 const Quatf att_q{ekf.calculate_quaternion()};
486 ltp_to_body_quat.qi = QUAT1_BFP_OF_REAL(att_q(0));
487 ltp_to_body_quat.qx = QUAT1_BFP_OF_REAL(att_q(1));
488 ltp_to_body_quat.qy = QUAT1_BFP_OF_REAL(att_q(2));
489 ltp_to_body_quat.qz = QUAT1_BFP_OF_REAL(att_q(3));
490 struct Int32Quat *quat = stateGetNedToBodyQuat_i();
491 float foo = 0.f;
492 uint8_t ahrs_id = 1; // generic
494 &foo,
495 &ltp_to_body_quat.qi,
496 &ltp_to_body_quat.qx,
497 &ltp_to_body_quat.qy,
498 &ltp_to_body_quat.qz,
499 &(quat->qi),
500 &(quat->qx),
501 &(quat->qy),
502 &(quat->qz),
503 &ahrs_id);
504}
505
506
507static void send_external_pose_down(struct transport_tx *trans, struct link_device *dev)
508{
509 if(sample_ev.time_us == 0){
510 return;
511 }
512 float sample_temp_ev[11];
513 sample_temp_ev[0] = (float) sample_ev.time_us;
514 sample_temp_ev[1] = sample_ev.pos(0) ;
515 sample_temp_ev[2] = sample_ev.pos(1) ;
516 sample_temp_ev[3] = sample_ev.pos(2) ;
517 sample_temp_ev[4] = sample_ev.vel(0) ;
518 sample_temp_ev[5] = sample_ev.vel(1) ;
519 sample_temp_ev[6] = sample_ev.vel(2) ;
520 sample_temp_ev[7] = sample_ev.quat(0);
521 sample_temp_ev[8] = sample_ev.quat(1);
522 sample_temp_ev[9] = sample_ev.quat(2);
523 sample_temp_ev[10] = sample_ev.quat(3);
525 &sample_temp_ev[0],
526 &sample_temp_ev[1],
527 &sample_temp_ev[2],
528 &sample_temp_ev[3],
529 &sample_temp_ev[4],
530 &sample_temp_ev[5],
531 &sample_temp_ev[6],
532 &sample_temp_ev[7],
533 &sample_temp_ev[8],
534 &sample_temp_ev[9],
535 &sample_temp_ev[10] );
536}
537#endif
538
539/* Initialize the EKF */
541{
542 /* Get the ekf parameters */
543 ekf_params = ekf.getParamHandle();
544 ekf_params->fusion_mode = INS_EKF2_FUSION_MODE;
545 ekf_params->vdist_sensor_type = INS_EKF2_VDIST_SENSOR_TYPE;
546 ekf_params->gps_check_mask = INS_EKF2_GPS_CHECK_MASK;
547
548 /* Set specific noise levels */
549 ekf_params->accel_bias_p_noise = 3.0e-3f;
550 ekf_params->gps_vel_noise = INS_EKF2_GPS_V_NOISE;
551 ekf_params->gps_pos_noise = INS_EKF2_GPS_P_NOISE;
552 ekf_params->baro_noise = INS_EKF2_BARO_NOISE;
553
554 /* Set optical flow parameters */
555 ekf_params->flow_qual_min = INS_EKF2_MIN_FLOW_QUALITY;
556 ekf_params->flow_delay_ms = INS_EKF2_FLOW_SENSOR_DELAY;
557 ekf_params->range_delay_ms = INS_EKF2_FLOW_SENSOR_DELAY;
558 ekf_params->flow_noise = INS_EKF2_FLOW_NOISE;
559 ekf_params->flow_noise_qual_min = INS_EKF2_FLOW_NOISE_QMIN;
560 ekf_params->flow_innov_gate = INS_EKF2_FLOW_INNOV_GATE;
561
562 /* Set the IMU position relative from the CoG in xyz (m) */
563 ekf_params->imu_pos_body = {
567 };
568
569 /* Set the GPS position relative from the CoG in xyz (m) */
570 ekf_params->gps_pos_body = {
574 };
575
576 /* Set flow sensor offset from CoG position in xyz (m) */
577 ekf_params->flow_pos_body = {
581 };
582
583 /* Set range as default AGL measurement if possible */
585
586 /* Initialize struct */
587 ekf2.ltp_stamp = 0;
588 ekf2.flow_stamp = 0;
589 ekf2.gyro_valid = false;
590 ekf2.accel_valid = false;
591 ekf2.got_imu_data = false;
593 ekf2.temp = 20.0f; // Default temperature of 20 degrees celcius
594 ekf2.qnh = 1013.25f; // Default atmosphere
595
596 /* Initialize the range sensor limits */
598
599 /* Initialize the flow sensor limits */
601
602 // Don't send external vision data by default
603 sample_ev.time_us = 0;
604
605 /* Initialize the origin from flight plan */
606#if USE_INS_NAV_INIT
607 if(ekf.setEkfGlobalOrigin(NAV_LAT0*1e-7, NAV_LON0*1e-7, (NAV_ALT0)*1e-3)) // EKF2 works HMSL
608 {
609 struct LlaCoor_i llh_nav0; /* Height above the ellipsoid */
611 llh_nav0.lon = NAV_LON0;
612 /* NAV_ALT0 = ground alt above msl, NAV_MSL0 = geoid-height (msl) over ellipsoid */
613 llh_nav0.alt = NAV_ALT0 + NAV_MSL0; // in millimeters above WGS84 reference ellipsoid
614
618
619 /* update local ENU coordinates of global waypoints */
621
622 ekf2.ltp_stamp = 1;
623 }
624#endif
625
626#if PERIODIC_TELEMETRY
637#endif
638
639 /*
640 * Subscribe to scaled IMU measurements and attach callbacks
641 */
652}
653
654static void reset_ref(void)
655{
656#if USE_GPS
657 if (GpsFixValid()) {
658 struct LlaCoor_i lla_pos = lla_int_from_gps(&gps);
659 if (ekf.setEkfGlobalOrigin(lla_pos.lat*1e-7, lla_pos.lon*1e-7, gps.hmsl*1e-3)) {
660 ltp_def_from_lla_i(&ekf2.ltp_def, &lla_pos);
663 }
664 }
665#endif
666}
667
668static void reset_vertical_ref(void)
669{
670#if USE_GPS
671 if (GpsFixValid()) {
672 struct LlaCoor_i lla_pos = lla_int_from_gps(&gps);
673 struct LlaCoor_i lla = {
675 .lon = stateGetLlaOrigin_i().lon,
676 .alt = lla_pos.alt
677 };
678 if (ekf.setEkfGlobalOrigin(lla.lat*1e-7, lla.lon*1e-7, gps.hmsl*1e-3)) {
682 }
683 }
684#endif
685}
686
688{
689 switch (flag) {
690 case INS_RESET_REF:
691 reset_ref();
692 break;
695 break;
696 default:
697 // unsupported cases
698 break;
699 }
700}
701/* Update the INS state */
703{
704 /* Set EKF settings */
705 ekf.set_in_air_status(autopilot_in_flight());
706
707 /* Update the EKF */
708 if (ekf2.got_imu_data) {
709 // Update the EKF but ignore the response and also copy the faster intermediate filter
710 ekf.update();
711 filter_control_status_u control_status = ekf.control_status();
712
713 // Only publish position after successful alignment
714 if (control_status.flags.tilt_align) {
715 /* Get the position */
716 const Vector3f pos_f{ekf.getPosition()};
717 struct NedCoor_f pos;
718 pos.x = pos_f(0);
719 pos.y = pos_f(1);
720 pos.z = pos_f(2);
721
722 // Publish to the state
724
725 /* Get the velocity in NED frame */
726 const Vector3f vel_f{ekf.getVelocity()};
727 struct NedCoor_f speed;
728 speed.x = vel_f(0);
729 speed.y = vel_f(1);
730 speed.z = vel_f(2);
731
732 // Publish to state
734
735 /* Get the accelerations in NED frame */
736 const Vector3f vel_deriv_f{ekf.getVelocityDerivative()};
737 struct NedCoor_f accel;
738 accel.x = vel_deriv_f(0);
739 accel.y = vel_deriv_f(1);
740 accel.z = vel_deriv_f(2);
741
742 // Publish to state
744
745 /* Get local origin */
746 // Position of local NED origin in GPS / WGS84 frame
748 float ref_alt;
749 struct LlaCoor_i lla_ref;
751
752 // Only update the origin when the state estimator has updated the origin
755 lla_ref.lat = ekf_origin_lat * 1e7; // WGS-84 lat
756 lla_ref.lon = ekf_origin_lon * 1e7; // WGS-84 lon
757 lla_ref.alt = ref_alt * 1e3 + wgs84_ellipsoid_to_geoid_i(lla_ref.lat, lla_ref.lon); // in millimeters above WGS84 reference ellipsoid (ref_alt is in HMSL)
761
762 /* update local ENU coordinates of global waypoints */
764
766 }
767 }
768 }
769
770#if defined SITL && USE_NPS
771 if (nps_bypass_ins) {
773 }
774#endif
775
776 ekf2.got_imu_data = false;
777}
778
780{
781 ekf_params->mag_fusion_type = ekf2.mag_fusion_type = unk;
782}
783
785{
786 if (mode) {
788 } else {
790 }
791}
792
794 if (DL_EXTERNAL_POSE_ac_id(buf) != AC_ID) { return; } // not for this aircraft
795
796 sample_ev.time_us = get_sys_time_usec(); //FIXME
797 sample_ev.pos(0) = DL_EXTERNAL_POSE_enu_y(buf);
798 sample_ev.pos(1) = DL_EXTERNAL_POSE_enu_x(buf);
799 sample_ev.pos(2) = -DL_EXTERNAL_POSE_enu_z(buf);
801 sample_ev.vel(1) = DL_EXTERNAL_POSE_enu_xd(buf);
802 sample_ev.vel(2) = -DL_EXTERNAL_POSE_enu_zd(buf);
803 sample_ev.quat(0) = DL_EXTERNAL_POSE_body_qi(buf);
804 sample_ev.quat(1) = DL_EXTERNAL_POSE_body_qy(buf);
805 sample_ev.quat(2) = DL_EXTERNAL_POSE_body_qx(buf);
806 sample_ev.quat(3) = -DL_EXTERNAL_POSE_body_qz(buf);
807
808#ifdef INS_EXT_VISION_ROTATION
809 // Rotate the quaternion
810 struct FloatQuat body_q = {sample_ev.quat(0), sample_ev.quat(1), sample_ev.quat(2), sample_ev.quat(3)};
811 struct FloatQuat rot_q;
813 sample_ev.quat(0) = rot_q.qi;
814 sample_ev.quat(1) = rot_q.qx;
815 sample_ev.quat(2) = rot_q.qy;
816 sample_ev.quat(3) = rot_q.qz;
817#endif
818
819 sample_ev.posVar.setAll(INS_EKF2_EVP_NOISE);
820 sample_ev.velCov = matrix::eye<float, 3>() * INS_EKF2_EVV_NOISE;
822 sample_ev.vel_frame = velocity_frame_t::LOCAL_FRAME_FRD;
823
824 ekf.setExtVisionData(sample_ev);
825}
826
830
835{
837 imu_sample.time_us = stamp;
838 imu_sample.delta_ang_dt = ekf2.gyro_dt * 1.e-6f;
840 imu_sample.delta_vel_dt = ekf2.accel_dt * 1.e-6f;
842 ekf.setIMUData(imu_sample);
843
844 if (ekf.attitude_valid()) {
845 // Calculate the quaternion
846 struct FloatQuat ltp_to_body_quat;
847 const Quatf att_q{ekf.calculate_quaternion()};
848 ltp_to_body_quat.qi = att_q(0);
849 ltp_to_body_quat.qx = att_q(1);
850 ltp_to_body_quat.qy = att_q(2);
851 ltp_to_body_quat.qz = att_q(3);
852
853 // Publish it to the state
855
856 /* Check the quaternion reset state */
857 float delta_q_reset[4];
858 uint8_t quat_reset_counter;
859 ekf.get_quat_reset(delta_q_reset, &quat_reset_counter);
860
861#ifndef NO_RESET_UPDATE_SETPOINT_HEADING
862 // FIXME is this hard reset of control setpoint really needed ? is it the right place ?
863 if (ekf2.quat_reset_counter < quat_reset_counter) {
864 float psi = matrix::Eulerf(matrix::Quatf(delta_q_reset)).psi();
865 guidance_h.sp.heading += psi;
866 guidance_h.rc_sp.heading += psi;
867 nav.heading += psi;
868 //guidance_h_read_rc(autopilot_in_flight());
870 ekf2.quat_reset_counter = quat_reset_counter;
871 }
872#endif
873
874 /* Get in-run gyro bias */
875 struct FloatRates body_rates;
876 Vector3f gyro_bias{ekf.getGyroBias()};
877 body_rates.p = (ekf2.delta_gyro.p / (ekf2.gyro_dt * 1.e-6f)) - gyro_bias(0);
878 body_rates.q = (ekf2.delta_gyro.q / (ekf2.gyro_dt * 1.e-6f)) - gyro_bias(1);
879 body_rates.r = (ekf2.delta_gyro.r / (ekf2.gyro_dt * 1.e-6f)) - gyro_bias(2);
880
881 // Publish it to the state
883
884 /* Get the in-run acceleration bias */
885 struct Int32Vect3 accel;
886 Vector3f accel_bias{ekf.getAccelBias()};
887 accel.x = ACCEL_BFP_OF_REAL((ekf2.delta_accel.x / (ekf2.accel_dt * 1e-6f)) - accel_bias(0));
888 accel.y = ACCEL_BFP_OF_REAL((ekf2.delta_accel.y / (ekf2.accel_dt * 1e-6f)) - accel_bias(1));
889 accel.z = ACCEL_BFP_OF_REAL((ekf2.delta_accel.z / (ekf2.accel_dt * 1e-6f)) - accel_bias(2));
890
891 // Publish it to the state
893 }
894
895 ekf2.gyro_valid = false;
896 ekf2.accel_valid = false;
897 ekf2.got_imu_data = true;
898}
899
900/* Update INS based on Baro information */
901static void baro_cb(uint8_t __attribute__((unused)) sender_id, uint32_t stamp, float pressure)
902{
904 sample.time_us = stamp;
905
906 // Calculate the air density
907 float rho = pprz_isa_density_of_pressure(pressure, ekf2.temp);
908 ekf.set_air_density(rho);
909
910 // Calculate the height above mean sea level based on pressure
911 sample.hgt = pprz_isa_height_of_pressure_full(pressure, ekf2.qnh * 100.0f);
912 ekf.setBaroData(sample);
913}
914
915/* Save the latest temperature measurement for air density calculations */
916static void temperature_cb(uint8_t __attribute__((unused)) sender_id, float temp)
917{
918 ekf2.temp = temp;
919}
920
921/* Update INS based on AGL information */
922static void agl_cb(uint8_t __attribute__((unused)) sender_id, uint32_t stamp, float distance)
923{
925 sample.time_us = stamp;
926 sample.rng = distance;
927 sample.quality = -1;
928
929 ekf.setRangeData(sample);
930}
931
932/* Update INS based on Gyro information */
934 uint32_t stamp, struct FloatRates *delta_gyro, uint16_t dt)
935{
936 // Copy and save the gyro data
937 RATES_COPY(ekf2.delta_gyro, *delta_gyro);
938 ekf2.gyro_dt = dt;
939 ekf2.gyro_valid = true;
940
941 /* When Gyro and accelerometer are valid enter it into the EKF */
944 }
945}
946
947/* Update INS based on Accelerometer information */
949 uint32_t stamp, struct FloatVect3 *delta_accel, uint16_t dt)
950{
951 // Copy and save the gyro data
952 VECT3_COPY(ekf2.delta_accel, *delta_accel);
953 ekf2.accel_dt = dt;
954 ekf2.accel_valid = true;
955
956 /* When Gyro and accelerometer are valid enter it into the EKF */
959 }
960}
961
962/* Update INS based on Magnetometer information */
963static void mag_cb(uint8_t __attribute__((unused)) sender_id,
965 struct Int32Vect3 *mag)
966{
967 struct FloatVect3 mag_gauss;
969 sample.time_us = stamp;
970
971 // Convert Magnetometer information to float and to radius 0.2f
973 mag_gauss.x *= 0.4f;
974 mag_gauss.y *= 0.4f;
975 mag_gauss.z *= 0.4f;
976
977 // Publish information to the EKF
978 sample.mag(0) = mag_gauss.x;
979 sample.mag(1) = mag_gauss.y;
980 sample.mag(2) = mag_gauss.z;
981
982 ekf.setMagData(sample);
983 ekf2.got_imu_data = true;
984}
985
986/* Update INS based on GPS information */
987static void gps_cb(uint8_t sender_id __attribute__((unused)),
989 struct GpsState *gps_s)
990{
991 gps_message gps_msg = {};
992 gps_msg.time_usec = stamp;
993 struct LlaCoor_i lla_pos = lla_int_from_gps(gps_s);
994 gps_msg.lat = lla_pos.lat;
995 gps_msg.lon = lla_pos.lon;
996 gps_msg.alt = gps_s->hmsl; // EKF2 works with HMSL
997#if INS_EKF2_GPS_COURSE_YAW
998 gps_msg.yaw = wrap_pi((float)gps_s->course / 1e7);
999 gps_msg.yaw_offset = 0;
1000#elif defined(INS_EKF2_GPS_YAW_OFFSET)
1003 ekf2.rel_heading_valid = false;
1004 } else {
1005 gps_msg.yaw = NAN;
1006 }
1007
1008 // Offset also needs to be substracted from the heading (this is for roll/pitch angle limits)
1010#else
1011 gps_msg.yaw = NAN;
1012 gps_msg.yaw_offset = NAN;
1013#endif
1014 gps_msg.fix_type = gps_s->fix;
1015 gps_msg.eph = gps_s->hacc / 100.0;
1016 gps_msg.epv = gps_s->vacc / 100.0;
1017 gps_msg.sacc = gps_s->sacc / 100.0;
1018 gps_msg.vel_m_s = gps_s->gspeed / 100.0;
1019 struct NedCoor_f ned_vel = ned_vel_float_from_gps(gps_s);
1020 gps_msg.vel_ned(0) = ned_vel.x;
1021 gps_msg.vel_ned(1) = ned_vel.y;
1022 gps_msg.vel_ned(2) = ned_vel.z;
1023 gps_msg.vel_ned_valid = bit_is_set(gps_s->valid_fields, GPS_VALID_VEL_NED_BIT);
1024 gps_msg.nsats = gps_s->num_sv;
1025 gps_msg.pdop = gps_s->pdop;
1026
1027 ekf.setGpsData(gps_msg);
1028}
1029
1030/* Update the local relative position information */
1032{
1033 // Verify if we received a valid heading
1034 if(
1036 relpos->reference_id != INS_EKF2_RELHEADING_REF_ID ||
1037#endif
1040#endif
1041 !ISFINITE(relpos->heading)
1042 ) {
1043 return;
1044 }
1045
1046 ekf2.rel_heading = relpos->heading;
1047 ekf2.rel_heading_valid = true;
1048}
1049
1050/* Update INS based on Optical Flow information */
1053 int32_t flow_x,
1054 int32_t flow_y,
1055 int32_t flow_der_x __attribute__((unused)),
1056 int32_t flow_der_y __attribute__((unused)),
1057 float quality,
1058 float size_divergence __attribute__((unused)))
1059{
1061 sample.time_us = stamp;
1062
1063 // Wait for two measurements in order to integrate
1064 if (ekf2.flow_stamp <= 0) {
1066 return;
1067 }
1068
1069 // Calculate the timestamp
1070 sample.dt = (stamp - ekf2.flow_stamp);
1072
1073 /* Build integrated flow and gyro messages for filter
1074 NOTE: pure rotations should result in same flow_x and
1075 gyro_roll and same flow_y and gyro_pitch */
1077 flowdata(0) = RadOfDeg(flow_y) * (1e-6 *
1078 sample.dt); // INTEGRATED FLOW AROUND Y AXIS (RIGHT -X, LEFT +X)
1079 flowdata(1) = - RadOfDeg(flow_x) * (1e-6 *
1080 sample.dt); // INTEGRATED FLOW AROUND X AXIS (FORWARD +Y, BACKWARD -Y)
1081
1082 sample.quality = quality; // quality indicator between 0 and 255
1083 sample.flow_xy_rad =
1084 flowdata; // measured delta angle of the image about the X and Y body axes (rad), RH rotaton is positive
1085 sample.gyro_xyz = Vector3f{NAN, NAN, NAN}; // measured delta angle of the inertial frame about the body axes obtained from rate gyro measurements (rad), RH rotation is positive
1086
1087 // Update the optical flow data based on the callback
1088 ekf.setOpticalFlowData(sample);
1089}
Main include for ABI (AirBorneInterface).
#define ABI_BROADCAST
Broadcast address.
Definition abi_common.h:58
Event structure to store callbacks in a linked list.
Definition abi_common.h:67
#define AHRS_COMP_ID_EKF2
Definition ahrs.h:47
bool autopilot_in_flight(void)
get in_flight flag
Definition autopilot.c:340
Core autopilot interface common to all firmwares.
#define UNUSED(x)
uint32_t get_sys_time_usec(void)
Get the time in microseconds since startup.
static const float pos_z[]
struct NedCoor_f ned_vel_float_from_gps(struct GpsState *gps_s)
Get GPS ned velocity (float) Converted on the fly if not available.
Definition gps.c:544
struct GpsState gps
global GPS state
Definition gps.c:74
struct LlaCoor_i lla_int_from_gps(struct GpsState *gps_s)
Get GPS lla (integer) Converted on the fly if not available.
Definition gps.c:464
int32_t hmsl
height above mean sea level (MSL) in mm
Definition gps.h:94
#define GPS_VALID_VEL_NED_BIT
Definition gps.h:52
#define GpsFixValid()
Definition gps.h:168
data structure for GPS information
Definition gps.h:87
float q
in rad/s
float p
in rad/s
float r
in rad/s
void float_quat_comp(struct FloatQuat *a2c, struct FloatQuat *a2b, struct FloatQuat *b2c)
Composition (multiplication) of two quaternions.
Roation quaternion.
angular rates
#define MAGS_FLOAT_OF_BFP(_ef, _ei)
#define RATES_COPY(_a, _b)
#define VECT3_COPY(_a, _b)
#define QUAT1_BFP_OF_REAL(_qf)
#define ACCEL_BFP_OF_REAL(_af)
#define POS_BFP_OF_REAL(_af)
#define SPEED_BFP_OF_REAL(_af)
Rotation quaternion.
int32_t lat
in degrees*1e7
int32_t hmsl
Height above mean sea level in mm.
int32_t alt
in millimeters above WGS84 reference ellipsoid
int32_t z
Down.
int32_t z
in centimeters
struct LlaCoor_i lla
Reference point in lla.
int32_t x
in centimeters
int32_t y
East.
struct EcefCoor_i ecef
Reference point in ecef.
int32_t y
in centimeters
int32_t lon
in degrees*1e7
int32_t x
North.
void ltp_def_from_lla_i(struct LtpDef_i *def, struct LlaCoor_i *lla)
vector in Latitude, Longitude and Altitude
vector in North East Down coordinates
static int32_t wgs84_ellipsoid_to_geoid_i(int32_t lat, int32_t lon)
Get WGS84 ellipsoid/geoid separation.
static float pprz_isa_density_of_pressure(float pressure, float temp)
Get the air density (rho) from a given pressure and temperature.
Definition pprz_isa.h:193
static float pprz_isa_height_of_pressure_full(float pressure, float ref_p)
Get relative altitude from pressure (using full equation).
Definition pprz_isa.h:146
static void stateSetAccelNed_f(uint16_t id, struct NedCoor_f *ned_accel)
Set acceleration in NED coordinates (float).
Definition state.h:1147
static void stateSetAccelBody_i(uint16_t id, struct Int32Vect3 *body_accel)
Set acceleration in Body coordinates (int).
Definition state.h:1167
static struct Int32Quat * stateGetNedToBodyQuat_i(void)
Get vehicle body attitude quaternion (int).
Definition state.h:1276
static void stateSetNedToBodyQuat_f(uint16_t id, struct FloatQuat *ned_to_body_quat)
Set vehicle body attitude from quaternion (float).
Definition state.h:1253
static void stateSetPositionNed_f(uint16_t id, struct NedCoor_f *ned_pos)
Set position from local NED coordinates (float).
Definition state.h:718
static void stateSetLocalOrigin_i(uint16_t id, struct LtpDef_i *ltp_def)
Set the local (flat earth) coordinate frame origin (int).
Definition state.h:519
struct LlaCoor_i stateGetLlaOrigin_i(void)
Get the LLA position of the frame origin (int)
Definition state.c:124
static void stateSetBodyRates_f(uint16_t id, struct FloatRates *body_rate)
Set vehicle body angular rate (float).
Definition state.h:1346
static void stateSetSpeedNed_f(uint16_t id, struct NedCoor_f *ned_speed)
Set ground speed in local NED coordinates (float).
Definition state.h:947
#define INS_RESET_VERTICAL_REF
Definition ins.h:37
#define INS_RESET_REF
flags for INS reset
Definition ins.h:36
static void reset_vertical_ref(void)
Definition ins_ekf2.cpp:668
static void relpos_cb(uint8_t sender_id, uint32_t stamp, struct RelPosNED *relpos)
static abi_event optical_flow_ev
Definition ins_ekf2.cpp:305
static void gps_cb(uint8_t sender_id, uint32_t stamp, struct GpsState *gps_s)
Definition ins_ekf2.cpp:987
#define INS_EKF2_EVV_NOISE
Definition ins_ekf2.cpp:259
void ins_ekf2_update(void)
Definition ins_ekf2.cpp:702
#define INS_EKF2_IMU_POS_Z
Definition ins_ekf2.cpp:175
#define INS_EKF2_GPS_ID
Definition ins_ekf2.cpp:145
static void reset_cb(uint8_t sender_id, uint8_t flag)
Definition ins_ekf2.cpp:687
static void send_ins(struct transport_tx *trans, struct link_device *dev)
Definition ins_ekf2.cpp:331
#define INS_EKF2_GPS_POS_Y
Definition ins_ekf2.cpp:187
static void send_ins_ekf2(struct transport_tx *trans, struct link_device *dev)
Definition ins_ekf2.cpp:388
void ins_ekf2_remove_gps(int32_t mode)
Definition ins_ekf2.cpp:784
static void send_ins_ekf2_ext(struct transport_tx *trans, struct link_device *dev)
Definition ins_ekf2.cpp:421
static abi_event temperature_ev
Definition ins_ekf2.cpp:298
static void optical_flow_cb(uint8_t sender_id, uint32_t stamp, int32_t flow_x, int32_t flow_y, int32_t flow_der_x, int32_t flow_der_y, float quality, float size_divergence)
#define INS_EKF2_TEMPERATURE_ID
default temperature sensor to use in INS
Definition ins_ekf2.cpp:115
#define INS_EKF2_RELHEADING_ERR
Definition ins_ekf2.cpp:289
#define INS_EKF2_VDIST_SENSOR_TYPE
The EKF2 primary vertical distance sensor type.
Definition ins_ekf2.cpp:75
static abi_event mag_ev
Definition ins_ekf2.cpp:302
static void reset_ref(void)
Definition ins_ekf2.cpp:654
#define INS_EKF2_RELPOS_ID
Definition ins_ekf2.cpp:151
static void mag_cb(uint8_t sender_id, uint32_t stamp, struct Int32Vect3 *mag)
Definition ins_ekf2.cpp:963
static void accel_int_cb(uint8_t sender_id, uint32_t stamp, struct FloatVect3 *delta_accel, uint16_t dt)
Definition ins_ekf2.cpp:948
#define INS_EKF2_FUSION_MODE
Special configuration for Optitrack.
Definition ins_ekf2.cpp:69
static abi_event reset_ev
Definition ins_ekf2.cpp:306
#define INS_EKF2_GPS_CHECK_MASK
The EKF2 GPS checks before initialization.
Definition ins_ekf2.cpp:81
#define INS_EKF2_RANGE_MAIN_AGL
If enabled uses radar sensor as primary AGL source, if possible.
Definition ins_ekf2.cpp:99
#define INS_EKF2_MAX_FLOW_RATE
Definition ins_ekf2.cpp:211
#define INS_EKF2_GPS_POS_Z
Definition ins_ekf2.cpp:193
static abi_event gyro_int_ev
Definition ins_ekf2.cpp:300
static abi_event relpos_ev
Definition ins_ekf2.cpp:304
#define INS_EKF2_EVA_NOISE
Definition ins_ekf2.cpp:265
#define INS_EKF2_BARO_NOISE
Definition ins_ekf2.cpp:283
#define INS_EKF2_ACCEL_ID
Definition ins_ekf2.cpp:133
#define INS_EKF2_GYRO_ID
Definition ins_ekf2.cpp:127
static void send_ins_ref(struct transport_tx *trans, struct link_device *dev)
Definition ins_ekf2.cpp:378
static void temperature_cb(uint8_t sender_id, float temp)
Definition ins_ekf2.cpp:916
#define INS_EKF2_FLOW_POS_Y
Definition ins_ekf2.cpp:223
static void agl_cb(uint8_t sender_id, uint32_t stamp, float distance)
Definition ins_ekf2.cpp:922
static void send_ins_z(struct transport_tx *trans, struct link_device *dev)
Definition ins_ekf2.cpp:358
static abi_event baro_ev
Definition ins_ekf2.cpp:297
static parameters * ekf_params
The EKF parameters.
Definition ins_ekf2.cpp:325
void ins_ekf2_init(void)
Definition ins_ekf2.cpp:540
static void send_filter_status(struct transport_tx *trans, struct link_device *dev)
Definition ins_ekf2.cpp:435
#define INS_EKF2_FLOW_INNOV_GATE
Definition ins_ekf2.cpp:247
#define INS_EKF2_FLOW_NOISE
Definition ins_ekf2.cpp:235
#define INS_EKF2_EVP_NOISE
Definition ins_ekf2.cpp:253
static void baro_cb(uint8_t sender_id, uint32_t stamp, float pressure)
Definition ins_ekf2.cpp:901
void ins_ekf2_change_param(int32_t unk)
Definition ins_ekf2.cpp:779
static void send_wind_info_ret(struct transport_tx *trans, struct link_device *dev)
Definition ins_ekf2.cpp:460
#define INS_EKF2_MIN_FLOW_QUALITY
Definition ins_ekf2.cpp:205
#define INS_EKF2_GPS_V_NOISE
Definition ins_ekf2.cpp:271
static Ekf ekf
EKF class itself.
Definition ins_ekf2.cpp:324
struct ekf2_t ekf2
Local EKF2 status structure.
Definition ins_ekf2.cpp:326
#define INS_EKF2_FLOW_SENSOR_DELAY
Definition ins_ekf2.cpp:199
void ins_ekf2_parse_EXTERNAL_POSE(uint8_t *buf)
Definition ins_ekf2.cpp:793
void ins_ekf2_parse_EXTERNAL_POSE_SMALL(uint8_t *buf)
Definition ins_ekf2.cpp:827
#define INS_EKF2_MAG_ID
Definition ins_ekf2.cpp:139
#define INS_EKF2_IMU_POS_X
Definition ins_ekf2.cpp:163
#define INS_EKF2_GPS_P_NOISE
Definition ins_ekf2.cpp:277
static void send_ahrs_quat(struct transport_tx *trans, struct link_device *dev)
Definition ins_ekf2.cpp:482
#define INS_EKF2_AGL_ID
default AGL sensor to use in INS
Definition ins_ekf2.cpp:121
#define INS_EKF2_OF_ID
Definition ins_ekf2.cpp:157
static void ins_ekf2_publish_attitude(uint32_t stamp)
Publish the attitude and get the new state Directly called after a succeslfull gyro+accel reading.
Definition ins_ekf2.cpp:834
static void gyro_int_cb(uint8_t sender_id, uint32_t stamp, struct FloatRates *delta_gyro, uint16_t dt)
Definition ins_ekf2.cpp:933
#define INS_EKF2_SONAR_MIN_RANGE
Default AGL sensor minimum range.
Definition ins_ekf2.cpp:87
#define INS_EKF2_FLOW_NOISE_QMIN
Definition ins_ekf2.cpp:241
#define INS_EKF2_IMU_POS_Y
Definition ins_ekf2.cpp:169
static abi_event accel_int_ev
Definition ins_ekf2.cpp:301
#define INS_EKF2_FLOW_POS_Z
Definition ins_ekf2.cpp:229
static struct extVisionSample sample_ev
External vision sample.
Definition ins_ekf2.cpp:327
#define INS_EKF2_BARO_ID
default barometer to use in INS
Definition ins_ekf2.cpp:108
static void send_external_pose_down(struct transport_tx *trans, struct link_device *dev)
Definition ins_ekf2.cpp:507
#define INS_EKF2_SONAR_MAX_RANGE
Default AGL sensor maximum range.
Definition ins_ekf2.cpp:93
#define INS_EKF2_GPS_POS_X
Definition ins_ekf2.cpp:181
#define INS_EKF2_FLOW_POS_X
Definition ins_ekf2.cpp:217
static abi_event gps_ev
Definition ins_ekf2.cpp:303
static abi_event agl_ev
Definition ins_ekf2.cpp:299
static void send_ahrs_bias(struct transport_tx *trans, struct link_device *dev)
Definition ins_ekf2.cpp:472
INS based in the EKF2 of PX4.
int32_t mag_fusion_type
Definition ins_ekf2.h:58
bool accel_valid
If we received a acceleration measurement.
Definition ins_ekf2.h:46
bool rel_heading_valid
If we received a valid relative heading.
Definition ins_ekf2.h:49
bool got_imu_data
If we received valid IMU data (any sensor)
Definition ins_ekf2.h:56
int32_t fusion_mode
Definition ins_ekf2.h:59
bool gyro_valid
If we received a gyroscope measurement.
Definition ins_ekf2.h:45
uint32_t accel_dt
Accelerometer delta timestamp between abi messages (us)
Definition ins_ekf2.h:44
uint32_t gyro_dt
Gyroscope delta timestamp between abi messages (us)
Definition ins_ekf2.h:43
struct LtpDef_i ltp_def
Latest LTP definition from the quat_reset_counter EKF2.
Definition ins_ekf2.h:55
uint32_t flow_stamp
Optic flow last abi message timestamp.
Definition ins_ekf2.h:47
float rel_heading
Relative heading from RTK gps (rad)
Definition ins_ekf2.h:48
float temp
Latest temperature measurement in degrees celcius.
Definition ins_ekf2.h:51
struct FloatVect3 delta_accel
Last accelerometer measurements.
Definition ins_ekf2.h:42
uint64_t ltp_stamp
Last LTP change timestamp from the EKF2.
Definition ins_ekf2.h:54
float qnh
QNH value in hPa.
Definition ins_ekf2.h:52
uint8_t quat_reset_counter
Amount of quaternion resets from the EKF2.
Definition ins_ekf2.h:53
struct FloatRates delta_gyro
Last gyroscope measurements.
Definition ins_ekf2.h:41
float parameters[22]
Definition ins_flow.c:249
uint16_t foo
Definition main_demo5.c:58
void waypoints_localize_all(void)
update local ENU coordinates of global waypoints
Definition waypoints.c:357
bool nps_bypass_ins
void sim_overwrite_ins(void)
PRINT_CONFIG_VAR(ONELOOP_ANDI_FILT_CUTOFF)
float z
in meters
float x
in meters
float y
in meters
vector in North East Down coordinates Units: meters
WGS-84 Geoid Heights.
Paparazzi atmospheric pressure conversion utilities.
struct HorizontalGuidance guidance_h
Definition guidance_h.c:45
struct HorizontalGuidanceRCInput rc_sp
remote control setpoint
Definition guidance_h.h:110
struct HorizontalGuidanceSetpoint sp
setpoints
Definition guidance_h.h:108
struct RotorcraftNavigation nav
Definition navigation.c:51
float heading
heading setpoint (in radians)
Definition navigation.h:133
void stabilization_attitude_enter(void)
Attitude control enter function.
static uint8_t mode
mode holds the current sonar mode mode = 0 used at high altitude, uses 16 wave patterns mode = 1 used...
Definition sonar_bebop.c:65
static const struct usb_device_descriptor dev
Definition usb_ser_hw.c:74
Architecture independent timing functions.
int8_t register_periodic_telemetry(struct periodic_telemetry *_pt, uint8_t _id, telemetry_cb _cb)
Register a telemetry callback function.
Definition telemetry.c:51
Periodic telemetry system header (includes downlink utility and generated code).
#define DefaultPeriodic
Set default periodic telemetry.
Definition telemetry.h:66
unsigned short uint16_t
Typedef defining 16 bit unsigned short type.
int int32_t
Typedef defining 32 bit int type.
unsigned int uint32_t
Typedef defining 32 bit unsigned int type.
unsigned long long uint64_t
unsigned char uint8_t
Typedef defining 8 bit unsigned char type.