Paparazzi UAS  v7.0_unstable
Paparazzi is a free software Unmanned Aircraft System.
pprz_algebra_float.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2008-2014 The Paparazzi Team
3  *
4  * This file is part of paparazzi.
5  *
6  * paparazzi is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2, or (at your option)
9  * any later version.
10  *
11  * paparazzi is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with paparazzi; see the file COPYING. If not, see
18  * <http://www.gnu.org/licenses/>.
19  */
20 
27 #include "pprz_algebra_float.h"
28 
30 void float_vect3_integrate_fi(struct FloatVect3 *vec, struct FloatVect3 *dv, float dt)
31 {
32  vec->x += dv->x * dt;
33  vec->y += dv->y * dt;
34  vec->z += dv->z * dt;
35 }
36 
38 void float_rates_integrate_fi(struct FloatRates *r, struct FloatRates *dr, float dt)
39 {
40  r->p += dr->p * dt;
41  r->q += dr->q * dt;
42  r->r += dr->r * dt;
43 }
44 
45 void float_rates_of_euler_dot(struct FloatRates *r, struct FloatEulers *e, struct FloatEulers *edot)
46 {
47  r->p = edot->phi - sinf(e->theta) * edot->psi;
48  r->q = cosf(e->phi) * edot->theta + sinf(e->phi) * cosf(e->theta) * edot->psi;
49  r->r = -sinf(e->phi) * edot->theta + cosf(e->phi) * cosf(e->theta) * edot->psi;
50 }
51 
52 
53 
54 
55 void float_rmat_inv(struct FloatRMat *m_b2a, struct FloatRMat *m_a2b)
56 {
57  RMAT_ELMT(*m_b2a, 0, 0) = RMAT_ELMT(*m_a2b, 0, 0);
58  RMAT_ELMT(*m_b2a, 0, 1) = RMAT_ELMT(*m_a2b, 1, 0);
59  RMAT_ELMT(*m_b2a, 0, 2) = RMAT_ELMT(*m_a2b, 2, 0);
60  RMAT_ELMT(*m_b2a, 1, 0) = RMAT_ELMT(*m_a2b, 0, 1);
61  RMAT_ELMT(*m_b2a, 1, 1) = RMAT_ELMT(*m_a2b, 1, 1);
62  RMAT_ELMT(*m_b2a, 1, 2) = RMAT_ELMT(*m_a2b, 2, 1);
63  RMAT_ELMT(*m_b2a, 2, 0) = RMAT_ELMT(*m_a2b, 0, 2);
64  RMAT_ELMT(*m_b2a, 2, 1) = RMAT_ELMT(*m_a2b, 1, 2);
65  RMAT_ELMT(*m_b2a, 2, 2) = RMAT_ELMT(*m_a2b, 2, 2);
66 }
67 
68 float float_rmat_norm(struct FloatRMat *rm)
69 {
70  return sqrtf(SQUARE(rm->m[0]) + SQUARE(rm->m[1]) + SQUARE(rm->m[2]) +
71  SQUARE(rm->m[3]) + SQUARE(rm->m[4]) + SQUARE(rm->m[5]) +
72  SQUARE(rm->m[6]) + SQUARE(rm->m[7]) + SQUARE(rm->m[8]));
73 }
74 
78 void float_rmat_comp(struct FloatRMat *m_a2c, struct FloatRMat *m_a2b, struct FloatRMat *m_b2c)
79 {
80  m_a2c->m[0] = m_b2c->m[0] * m_a2b->m[0] + m_b2c->m[1] * m_a2b->m[3] + m_b2c->m[2] * m_a2b->m[6];
81  m_a2c->m[1] = m_b2c->m[0] * m_a2b->m[1] + m_b2c->m[1] * m_a2b->m[4] + m_b2c->m[2] * m_a2b->m[7];
82  m_a2c->m[2] = m_b2c->m[0] * m_a2b->m[2] + m_b2c->m[1] * m_a2b->m[5] + m_b2c->m[2] * m_a2b->m[8];
83  m_a2c->m[3] = m_b2c->m[3] * m_a2b->m[0] + m_b2c->m[4] * m_a2b->m[3] + m_b2c->m[5] * m_a2b->m[6];
84  m_a2c->m[4] = m_b2c->m[3] * m_a2b->m[1] + m_b2c->m[4] * m_a2b->m[4] + m_b2c->m[5] * m_a2b->m[7];
85  m_a2c->m[5] = m_b2c->m[3] * m_a2b->m[2] + m_b2c->m[4] * m_a2b->m[5] + m_b2c->m[5] * m_a2b->m[8];
86  m_a2c->m[6] = m_b2c->m[6] * m_a2b->m[0] + m_b2c->m[7] * m_a2b->m[3] + m_b2c->m[8] * m_a2b->m[6];
87  m_a2c->m[7] = m_b2c->m[6] * m_a2b->m[1] + m_b2c->m[7] * m_a2b->m[4] + m_b2c->m[8] * m_a2b->m[7];
88  m_a2c->m[8] = m_b2c->m[6] * m_a2b->m[2] + m_b2c->m[7] * m_a2b->m[5] + m_b2c->m[8] * m_a2b->m[8];
89 }
90 
94 void float_rmat_comp_inv(struct FloatRMat *m_a2b, struct FloatRMat *m_a2c, struct FloatRMat *m_b2c)
95 {
96  m_a2b->m[0] = m_b2c->m[0] * m_a2c->m[0] + m_b2c->m[3] * m_a2c->m[3] + m_b2c->m[6] * m_a2c->m[6];
97  m_a2b->m[1] = m_b2c->m[0] * m_a2c->m[1] + m_b2c->m[3] * m_a2c->m[4] + m_b2c->m[6] * m_a2c->m[7];
98  m_a2b->m[2] = m_b2c->m[0] * m_a2c->m[2] + m_b2c->m[3] * m_a2c->m[5] + m_b2c->m[6] * m_a2c->m[8];
99  m_a2b->m[3] = m_b2c->m[1] * m_a2c->m[0] + m_b2c->m[4] * m_a2c->m[3] + m_b2c->m[7] * m_a2c->m[6];
100  m_a2b->m[4] = m_b2c->m[1] * m_a2c->m[1] + m_b2c->m[4] * m_a2c->m[4] + m_b2c->m[7] * m_a2c->m[7];
101  m_a2b->m[5] = m_b2c->m[1] * m_a2c->m[2] + m_b2c->m[4] * m_a2c->m[5] + m_b2c->m[7] * m_a2c->m[8];
102  m_a2b->m[6] = m_b2c->m[2] * m_a2c->m[0] + m_b2c->m[5] * m_a2c->m[3] + m_b2c->m[8] * m_a2c->m[6];
103  m_a2b->m[7] = m_b2c->m[2] * m_a2c->m[1] + m_b2c->m[5] * m_a2c->m[4] + m_b2c->m[8] * m_a2c->m[7];
104  m_a2b->m[8] = m_b2c->m[2] * m_a2c->m[2] + m_b2c->m[5] * m_a2c->m[5] + m_b2c->m[8] * m_a2c->m[8];
105 }
106 
110 void float_rmat_vmult(struct FloatVect3 *vb, struct FloatRMat *m_a2b, struct FloatVect3 *va)
111 {
112  vb->x = m_a2b->m[0] * va->x + m_a2b->m[1] * va->y + m_a2b->m[2] * va->z;
113  vb->y = m_a2b->m[3] * va->x + m_a2b->m[4] * va->y + m_a2b->m[5] * va->z;
114  vb->z = m_a2b->m[6] * va->x + m_a2b->m[7] * va->y + m_a2b->m[8] * va->z;
115 }
116 
120 void float_rmat_transp_vmult(struct FloatVect3 *vb, struct FloatRMat *m_b2a, struct FloatVect3 *va)
121 {
122  vb->x = m_b2a->m[0] * va->x + m_b2a->m[3] * va->y + m_b2a->m[6] * va->z;
123  vb->y = m_b2a->m[1] * va->x + m_b2a->m[4] * va->y + m_b2a->m[7] * va->z;
124  vb->z = m_b2a->m[2] * va->x + m_b2a->m[5] * va->y + m_b2a->m[8] * va->z;
125 }
126 
130 void float_rmat_mult(struct FloatEulers *rb, struct FloatRMat *m_a2b, struct FloatEulers *ra)
131 {
132  rb->phi = m_a2b->m[0] * ra->phi + m_a2b->m[1] * ra->theta + m_a2b->m[2] * ra->psi;
133  rb->theta = m_a2b->m[3] * ra->phi + m_a2b->m[4] * ra->theta + m_a2b->m[5] * ra->psi;
134  rb->psi = m_a2b->m[6] * ra->phi + m_a2b->m[7] * ra->theta + m_a2b->m[8] * ra->psi;
135 }
136 
140 void float_rmat_transp_mult(struct FloatEulers *rb, struct FloatRMat *m_b2a, struct FloatEulers *ra)
141 {
142  rb->phi = m_b2a->m[0] * ra->phi + m_b2a->m[3] * ra->theta + m_b2a->m[6] * ra->psi;
143  rb->theta = m_b2a->m[1] * ra->phi + m_b2a->m[4] * ra->theta + m_b2a->m[7] * ra->psi;
144  rb->psi = m_b2a->m[2] * ra->phi + m_b2a->m[5] * ra->theta + m_b2a->m[8] * ra->psi;
145 }
146 
150 void float_rmat_ratemult(struct FloatRates *rb, struct FloatRMat *m_a2b, struct FloatRates *ra)
151 {
152  rb->p = m_a2b->m[0] * ra->p + m_a2b->m[1] * ra->q + m_a2b->m[2] * ra->r;
153  rb->q = m_a2b->m[3] * ra->p + m_a2b->m[4] * ra->q + m_a2b->m[5] * ra->r;
154  rb->r = m_a2b->m[6] * ra->p + m_a2b->m[7] * ra->q + m_a2b->m[8] * ra->r;
155 }
156 
160 void float_rmat_transp_ratemult(struct FloatRates *rb, struct FloatRMat *m_b2a, struct FloatRates *ra)
161 {
162  rb->p = m_b2a->m[0] * ra->p + m_b2a->m[3] * ra->q + m_b2a->m[6] * ra->r;
163  rb->q = m_b2a->m[1] * ra->p + m_b2a->m[4] * ra->q + m_b2a->m[7] * ra->r;
164  rb->r = m_b2a->m[2] * ra->p + m_b2a->m[5] * ra->q + m_b2a->m[8] * ra->r;
165 }
166 
167 
169 void float_rmat_of_axis_angle(struct FloatRMat *rm, struct FloatVect3 *uv, float angle)
170 {
171  const float ux2 = uv->x * uv->x;
172  const float uy2 = uv->y * uv->y;
173  const float uz2 = uv->z * uv->z;
174  const float uxuy = uv->x * uv->y;
175  const float uyuz = uv->y * uv->z;
176  const float uxuz = uv->x * uv->z;
177  const float can = cosf(angle);
178  const float san = sinf(angle);
179  const float one_m_can = (1. - can);
180 
181  RMAT_ELMT(*rm, 0, 0) = ux2 + (1. - ux2) * can;
182  RMAT_ELMT(*rm, 0, 1) = uxuy * one_m_can + uv->z * san;
183  RMAT_ELMT(*rm, 0, 2) = uxuz * one_m_can - uv->y * san;
184  RMAT_ELMT(*rm, 1, 0) = RMAT_ELMT(*rm, 0, 1);
185  RMAT_ELMT(*rm, 1, 1) = uy2 + (1. - uy2) * can;
186  RMAT_ELMT(*rm, 1, 2) = uyuz * one_m_can + uv->x * san;
187  RMAT_ELMT(*rm, 2, 0) = RMAT_ELMT(*rm, 0, 2);
188  RMAT_ELMT(*rm, 2, 1) = RMAT_ELMT(*rm, 1, 2);
189  RMAT_ELMT(*rm, 2, 2) = uz2 + (1. - uz2) * can;
190 }
191 
192 
193 /* C n->b rotation matrix */
194 void float_rmat_of_eulers_321(struct FloatRMat *rm, struct FloatEulers *e)
195 {
196  const float sphi = sinf(e->phi);
197  const float cphi = cosf(e->phi);
198  const float stheta = sinf(e->theta);
199  const float ctheta = cosf(e->theta);
200  const float spsi = sinf(e->psi);
201  const float cpsi = cosf(e->psi);
202 
203  RMAT_ELMT(*rm, 0, 0) = ctheta * cpsi;
204  RMAT_ELMT(*rm, 0, 1) = ctheta * spsi;
205  RMAT_ELMT(*rm, 0, 2) = -stheta;
206  RMAT_ELMT(*rm, 1, 0) = sphi * stheta * cpsi - cphi * spsi;
207  RMAT_ELMT(*rm, 1, 1) = sphi * stheta * spsi + cphi * cpsi;
208  RMAT_ELMT(*rm, 1, 2) = sphi * ctheta;
209  RMAT_ELMT(*rm, 2, 0) = cphi * stheta * cpsi + sphi * spsi;
210  RMAT_ELMT(*rm, 2, 1) = cphi * stheta * spsi - sphi * cpsi;
211  RMAT_ELMT(*rm, 2, 2) = cphi * ctheta;
212 }
213 
214 void float_rmat_of_eulers_312(struct FloatRMat *rm, struct FloatEulers *e)
215 {
216  const float sphi = sinf(e->phi);
217  const float cphi = cosf(e->phi);
218  const float stheta = sinf(e->theta);
219  const float ctheta = cosf(e->theta);
220  const float spsi = sinf(e->psi);
221  const float cpsi = cosf(e->psi);
222 
223  RMAT_ELMT(*rm, 0, 0) = ctheta * cpsi - sphi * stheta * spsi;
224  RMAT_ELMT(*rm, 0, 1) = ctheta * spsi + sphi * stheta * cpsi;
225  RMAT_ELMT(*rm, 0, 2) = -cphi * stheta;
226  RMAT_ELMT(*rm, 1, 0) = -cphi * spsi;
227  RMAT_ELMT(*rm, 1, 1) = cphi * cpsi;
228  RMAT_ELMT(*rm, 1, 2) = sphi;
229  RMAT_ELMT(*rm, 2, 0) = stheta * cpsi + sphi * ctheta * spsi;
230  RMAT_ELMT(*rm, 2, 1) = stheta * spsi - sphi * ctheta * cpsi;
231  RMAT_ELMT(*rm, 2, 2) = cphi * ctheta;
232 }
233 
234 
235 /* C n->b rotation matrix */
236 void float_rmat_of_quat(struct FloatRMat *rm, struct FloatQuat *q)
237 {
238  const float _a = M_SQRT2 * q->qi;
239  const float _b = M_SQRT2 * q->qx;
240  const float _c = M_SQRT2 * q->qy;
241  const float _d = M_SQRT2 * q->qz;
242  const float a2_1 = _a * _a - 1;
243  const float ab = _a * _b;
244  const float ac = _a * _c;
245  const float ad = _a * _d;
246  const float bc = _b * _c;
247  const float bd = _b * _d;
248  const float cd = _c * _d;
249  RMAT_ELMT(*rm, 0, 0) = a2_1 + _b * _b;
250  RMAT_ELMT(*rm, 0, 1) = bc + ad;
251  RMAT_ELMT(*rm, 0, 2) = bd - ac;
252  RMAT_ELMT(*rm, 1, 0) = bc - ad;
253  RMAT_ELMT(*rm, 1, 1) = a2_1 + _c * _c;
254  RMAT_ELMT(*rm, 1, 2) = cd + ab;
255  RMAT_ELMT(*rm, 2, 0) = bd + ac;
256  RMAT_ELMT(*rm, 2, 1) = cd - ab;
257  RMAT_ELMT(*rm, 2, 2) = a2_1 + _d * _d;
258 }
259 
261 void float_rmat_integrate_fi(struct FloatRMat *rm, struct FloatRates *omega, float dt)
262 {
263  struct FloatRMat exp_omega_dt = {
264  {
265  1. , dt *omega->r, -dt *omega->q,
266  -dt *omega->r, 1. , dt *omega->p,
267  dt *omega->q, -dt *omega->p, 1.
268  }
269  };
270  struct FloatRMat R_tdt;
271  float_rmat_comp(&R_tdt, rm, &exp_omega_dt);
272  memcpy(rm, &R_tdt, sizeof(R_tdt));
273 }
274 
275 static inline float renorm_factor(float n)
276 {
277  if (n < 1.5625f && n > 0.64f) {
278  return .5 * (3 - n);
279  } else if (n < 100.0f && n > 0.01f) {
280  return 1. / sqrtf(n);
281  } else {
282  return 0.;
283  }
284 }
285 
287 {
288  const struct FloatVect3 r0 = {RMAT_ELMT(*rm, 0, 0),
289  RMAT_ELMT(*rm, 0, 1),
290  RMAT_ELMT(*rm, 0, 2)
291  };
292  const struct FloatVect3 r1 = {RMAT_ELMT(*rm, 1, 0),
293  RMAT_ELMT(*rm, 1, 1),
294  RMAT_ELMT(*rm, 1, 2)
295  };
296  float _err = -0.5 * VECT3_DOT_PRODUCT(r0, r1);
297  struct FloatVect3 r0_t;
298  VECT3_SUM_SCALED(r0_t, r0, r1, _err);
299  struct FloatVect3 r1_t;
300  VECT3_SUM_SCALED(r1_t, r1, r0, _err);
301  struct FloatVect3 r2_t;
302  VECT3_CROSS_PRODUCT(r2_t, r0_t, r1_t);
303  float s = renorm_factor(VECT3_NORM2(r0_t));
304  MAT33_ROW_VECT3_SMUL(*rm, 0, r0_t, s);
305  s = renorm_factor(VECT3_NORM2(r1_t));
306  MAT33_ROW_VECT3_SMUL(*rm, 1, r1_t, s);
307  s = renorm_factor(VECT3_NORM2(r2_t));
308  MAT33_ROW_VECT3_SMUL(*rm, 2, r2_t, s);
309 
310  return _err;
311 }
312 
313 
314 /*
315  *
316  * Quaternion functions.
317  *
318  */
319 
320 void float_quat_comp(struct FloatQuat *a2c, struct FloatQuat *a2b, struct FloatQuat *b2c)
321 {
322  a2c->qi = a2b->qi * b2c->qi - a2b->qx * b2c->qx - a2b->qy * b2c->qy - a2b->qz * b2c->qz;
323  a2c->qx = a2b->qi * b2c->qx + a2b->qx * b2c->qi + a2b->qy * b2c->qz - a2b->qz * b2c->qy;
324  a2c->qy = a2b->qi * b2c->qy - a2b->qx * b2c->qz + a2b->qy * b2c->qi + a2b->qz * b2c->qx;
325  a2c->qz = a2b->qi * b2c->qz + a2b->qx * b2c->qy - a2b->qy * b2c->qx + a2b->qz * b2c->qi;
326 }
327 
328 void float_quat_comp_inv(struct FloatQuat *a2b, struct FloatQuat *a2c, struct FloatQuat *b2c)
329 {
330  a2b->qi = a2c->qi * b2c->qi + a2c->qx * b2c->qx + a2c->qy * b2c->qy + a2c->qz * b2c->qz;
331  a2b->qx = -a2c->qi * b2c->qx + a2c->qx * b2c->qi - a2c->qy * b2c->qz + a2c->qz * b2c->qy;
332  a2b->qy = -a2c->qi * b2c->qy + a2c->qx * b2c->qz + a2c->qy * b2c->qi - a2c->qz * b2c->qx;
333  a2b->qz = -a2c->qi * b2c->qz - a2c->qx * b2c->qy + a2c->qy * b2c->qx + a2c->qz * b2c->qi;
334 }
335 
336 void float_quat_inv_comp(struct FloatQuat *b2c, struct FloatQuat *a2b, struct FloatQuat *a2c)
337 {
338  b2c->qi = a2b->qi * a2c->qi + a2b->qx * a2c->qx + a2b->qy * a2c->qy + a2b->qz * a2c->qz;
339  b2c->qx = a2b->qi * a2c->qx - a2b->qx * a2c->qi - a2b->qy * a2c->qz + a2b->qz * a2c->qy;
340  b2c->qy = a2b->qi * a2c->qy + a2b->qx * a2c->qz - a2b->qy * a2c->qi - a2b->qz * a2c->qx;
341  b2c->qz = a2b->qi * a2c->qz - a2b->qx * a2c->qy + a2b->qy * a2c->qx - a2b->qz * a2c->qi;
342 }
343 
344 void float_quat_comp_norm_shortest(struct FloatQuat *a2c, struct FloatQuat *a2b, struct FloatQuat *b2c)
345 {
346  float_quat_comp(a2c, a2b, b2c);
349 }
350 
351 void float_quat_comp_inv_norm_shortest(struct FloatQuat *a2b, struct FloatQuat *a2c, struct FloatQuat *b2c)
352 {
353  float_quat_comp_inv(a2b, a2c, b2c);
356 }
357 
358 void float_quat_inv_comp_norm_shortest(struct FloatQuat *b2c, struct FloatQuat *a2b, struct FloatQuat *a2c)
359 {
360  float_quat_inv_comp(b2c, a2b, a2c);
363 }
364 
365 void float_quat_differential(struct FloatQuat *q_out, struct FloatRates *w, float dt)
366 {
367  const float v_norm = sqrtf(w->p * w->p + w->q * w->q + w->r * w->r);
368  const float c2 = cos(dt * v_norm / 2.0);
369  const float s2 = sin(dt * v_norm / 2.0);
370  if (v_norm < 1e-8) {
371  q_out->qi = 1;
372  q_out->qx = 0;
373  q_out->qy = 0;
374  q_out->qz = 0;
375  } else {
376  q_out->qi = c2;
377  q_out->qx = w->p / v_norm * s2;
378  q_out->qy = w->q / v_norm * s2;
379  q_out->qz = w->r / v_norm * s2;
380  }
381 }
382 
384 void float_quat_integrate_fi(struct FloatQuat *q, struct FloatRates *omega, float dt)
385 {
386  const float qi = q->qi;
387  const float qx = q->qx;
388  const float qy = q->qy;
389  const float qz = q->qz;
390  const float dp = 0.5 * dt * omega->p;
391  const float dq = 0.5 * dt * omega->q;
392  const float dr = 0.5 * dt * omega->r;
393  q->qi = qi - dp * qx - dq * qy - dr * qz;
394  q->qx = dp * qi + qx + dr * qy - dq * qz;
395  q->qy = dq * qi - dr * qx + qy + dp * qz;
396  q->qz = dr * qi + dq * qx - dp * qy + qz;
397 }
398 
400 void float_quat_integrate(struct FloatQuat *q, struct FloatRates *omega, float dt)
401 {
402  const float no = FLOAT_RATES_NORM(*omega);
403  if (no > FLT_MIN) {
404  const float a = 0.5 * no * dt;
405  const float ca = cosf(a);
406  const float sa_ov_no = sinf(a) / no;
407  const float dp = sa_ov_no * omega->p;
408  const float dq = sa_ov_no * omega->q;
409  const float dr = sa_ov_no * omega->r;
410  const float qi = q->qi;
411  const float qx = q->qx;
412  const float qy = q->qy;
413  const float qz = q->qz;
414  q->qi = ca * qi - dp * qx - dq * qy - dr * qz;
415  q->qx = dp * qi + ca * qx + dr * qy - dq * qz;
416  q->qy = dq * qi - dr * qx + ca * qy + dp * qz;
417  q->qz = dr * qi + dq * qx - dp * qy + ca * qz;
418  }
419 }
420 
421 void float_quat_vmult(struct FloatVect3 *v_out, struct FloatQuat *q, const struct FloatVect3 *v_in)
422 {
423  const float qi2_M1_2 = q->qi * q->qi - 0.5;
424  const float qiqx = q->qi * q->qx;
425  const float qiqy = q->qi * q->qy;
426  const float qiqz = q->qi * q->qz;
427  float m01 = q->qx * q->qy; /* aka qxqy */
428  float m02 = q->qx * q->qz; /* aka qxqz */
429  float m12 = q->qy * q->qz; /* aka qyqz */
430 
431  const float m00 = qi2_M1_2 + q->qx * q->qx;
432  const float m10 = m01 - qiqz;
433  const float m20 = m02 + qiqy;
434  const float m21 = m12 - qiqx;
435  m01 += qiqz;
436  m02 -= qiqy;
437  m12 += qiqx;
438  const float m11 = qi2_M1_2 + q->qy * q->qy;
439  const float m22 = qi2_M1_2 + q->qz * q->qz;
440  v_out->x = 2 * (m00 * v_in->x + m01 * v_in->y + m02 * v_in->z);
441  v_out->y = 2 * (m10 * v_in->x + m11 * v_in->y + m12 * v_in->z);
442  v_out->z = 2 * (m20 * v_in->x + m21 * v_in->y + m22 * v_in->z);
443 }
444 
450 void float_quat_derivative(struct FloatQuat *qd, struct FloatRates *r, struct FloatQuat *q)
451 {
452  qd->qi = -0.5 * (r->p * q->qx + r->q * q->qy + r->r * q->qz);
453  qd->qx = -0.5 * (-r->p * q->qi - r->r * q->qy + r->q * q->qz);
454  qd->qy = -0.5 * (-r->q * q->qi + r->r * q->qx - r->p * q->qz);
455  qd->qz = -0.5 * (-r->r * q->qi - r->q * q->qx + r->p * q->qy);
456 }
457 
461 void float_quat_derivative_lagrange(struct FloatQuat *qd, struct FloatRates *r, struct FloatQuat *q)
462 {
463  const float K_LAGRANGE = 1.;
464  const float c = K_LAGRANGE * (1 - float_quat_norm(q)) / -0.5;
465  qd->qi = -0.5 * (c * q->qi + r->p * q->qx + r->q * q->qy + r->r * q->qz);
466  qd->qx = -0.5 * (-r->p * q->qi + c * q->qx - r->r * q->qy + r->q * q->qz);
467  qd->qy = -0.5 * (-r->q * q->qi + r->r * q->qx + c * q->qy - r->p * q->qz);
468  qd->qz = -0.5 * (-r->r * q->qi - r->q * q->qx + r->p * q->qy + c * q->qz);
469 }
470 
477 void float_quat_of_eulers(struct FloatQuat *q, struct FloatEulers *e)
478 {
479 
480  const float phi2 = e->phi / 2.f;
481  const float theta2 = e->theta / 2.f;
482  const float psi2 = e->psi / 2.f;
483 
484  const float s_phi2 = sinf(phi2);
485  const float c_phi2 = cosf(phi2);
486  const float s_theta2 = sinf(theta2);
487  const float c_theta2 = cosf(theta2);
488  const float s_psi2 = sinf(psi2);
489  const float c_psi2 = cosf(psi2);
490 
491  q->qi = c_phi2 * c_theta2 * c_psi2 + s_phi2 * s_theta2 * s_psi2;
492  q->qx = -c_phi2 * s_theta2 * s_psi2 + s_phi2 * c_theta2 * c_psi2;
493  q->qy = c_phi2 * s_theta2 * c_psi2 + s_phi2 * c_theta2 * s_psi2;
494  q->qz = c_phi2 * c_theta2 * s_psi2 - s_phi2 * s_theta2 * c_psi2;
495 }
496 
505 {
506  const float phi2 = e->phi / 2.f;
507  const float theta2 = e->theta / 2.f;
508  const float psi2 = e->psi / 2.f;
509 
510  const float s_phi2 = sinf(phi2);
511  const float c_phi2 = cosf(phi2);
512  const float s_theta2 = sinf(theta2);
513  const float c_theta2 = cosf(theta2);
514  const float s_psi2 = sinf(psi2);
515  const float c_psi2 = cosf(psi2);
516 
517  q->qi = c_phi2 * c_theta2 * c_psi2 - s_phi2 * s_theta2 * s_psi2;
518  q->qx = s_phi2 * c_theta2 * c_psi2 - c_phi2 * s_theta2 * s_psi2;
519  q->qy = c_phi2 * s_theta2 * c_psi2 + s_phi2 * c_theta2 * s_psi2;
520  q->qz = s_phi2 * s_theta2 * c_psi2 + c_phi2 * c_theta2 * s_psi2;
521 }
522 
533 {
534  const float phi2 = e->phi / 2.f;
535  const float theta2 = e->theta / 2.f;
536  const float psi2 = e->psi / 2.f;
537 
538  const float s_phi2 = sinf(phi2);
539  const float c_phi2 = cosf(phi2);
540  const float s_theta2 = sinf(theta2);
541  const float c_theta2 = cosf(theta2);
542  const float s_psi2 = sinf(psi2);
543  const float c_psi2 = cosf(psi2);
544 
545  q->qi = c_theta2 * c_phi2 * c_psi2 + s_theta2 * s_phi2 * s_psi2;
546  q->qx = c_theta2 * s_phi2 * c_psi2 + s_theta2 * c_phi2 * s_psi2;
547  q->qy = s_theta2 * c_phi2 * c_psi2 - c_theta2 * s_phi2 * s_psi2;
548  q->qz = c_theta2 * c_phi2 * s_psi2 - s_theta2 * s_phi2 * c_psi2;
549 }
550 
551 void float_quat_of_axis_angle(struct FloatQuat *q, const struct FloatVect3 *uv, float angle)
552 {
553  const float san = sinf(angle / 2.f);
554  q->qi = cosf(angle / 2.f);
555  q->qx = san * uv->x;
556  q->qy = san * uv->y;
557  q->qz = san * uv->z;
558 }
559 
560 void float_quat_of_orientation_vect(struct FloatQuat *q, const struct FloatVect3 *ov)
561 {
562  const float ov_norm = sqrtf(ov->x * ov->x + ov->y * ov->y + ov->z * ov->z);
563  if (ov_norm < 1e-8) {
564  q->qi = 1;
565  q->qx = 0;
566  q->qy = 0;
567  q->qz = 0;
568  } else {
569  const float s2_normalized = sinf(ov_norm / 2.0) / ov_norm;
570  q->qi = cosf(ov_norm / 2.0);
571  q->qx = ov->x * s2_normalized;
572  q->qy = ov->y * s2_normalized;
573  q->qz = ov->z * s2_normalized;
574  }
575 }
576 
577 void float_quat_of_rmat(struct FloatQuat *q, struct FloatRMat *rm)
578 {
579  const float tr = RMAT_TRACE(*rm);
580  if (tr > 0) {
581  const float two_qi = sqrtf(1. + tr);
582  const float four_qi = 2. * two_qi;
583  q->qi = 0.5 * two_qi;
584  q->qx = (RMAT_ELMT(*rm, 1, 2) - RMAT_ELMT(*rm, 2, 1)) / four_qi;
585  q->qy = (RMAT_ELMT(*rm, 2, 0) - RMAT_ELMT(*rm, 0, 2)) / four_qi;
586  q->qz = (RMAT_ELMT(*rm, 0, 1) - RMAT_ELMT(*rm, 1, 0)) / four_qi;
587  /*printf("tr > 0\n");*/
588  } else {
589  if (RMAT_ELMT(*rm, 0, 0) > RMAT_ELMT(*rm, 1, 1) &&
590  RMAT_ELMT(*rm, 0, 0) > RMAT_ELMT(*rm, 2, 2)) {
591  const float two_qx = sqrtf(RMAT_ELMT(*rm, 0, 0) - RMAT_ELMT(*rm, 1, 1)
592  - RMAT_ELMT(*rm, 2, 2) + 1);
593  const float four_qx = 2. * two_qx;
594  q->qi = (RMAT_ELMT(*rm, 1, 2) - RMAT_ELMT(*rm, 2, 1)) / four_qx;
595  q->qx = 0.5 * two_qx;
596  q->qy = (RMAT_ELMT(*rm, 0, 1) + RMAT_ELMT(*rm, 1, 0)) / four_qx;
597  q->qz = (RMAT_ELMT(*rm, 2, 0) + RMAT_ELMT(*rm, 0, 2)) / four_qx;
598  /*printf("m00 largest\n");*/
599  } else if (RMAT_ELMT(*rm, 1, 1) > RMAT_ELMT(*rm, 2, 2)) {
600  const float two_qy =
601  sqrtf(RMAT_ELMT(*rm, 1, 1) - RMAT_ELMT(*rm, 0, 0) - RMAT_ELMT(*rm, 2, 2) + 1);
602  const float four_qy = 2. * two_qy;
603  q->qi = (RMAT_ELMT(*rm, 2, 0) - RMAT_ELMT(*rm, 0, 2)) / four_qy;
604  q->qx = (RMAT_ELMT(*rm, 0, 1) + RMAT_ELMT(*rm, 1, 0)) / four_qy;
605  q->qy = 0.5 * two_qy;
606  q->qz = (RMAT_ELMT(*rm, 1, 2) + RMAT_ELMT(*rm, 2, 1)) / four_qy;
607  /*printf("m11 largest\n");*/
608  } else {
609  const float two_qz =
610  sqrtf(RMAT_ELMT(*rm, 2, 2) - RMAT_ELMT(*rm, 0, 0) - RMAT_ELMT(*rm, 1, 1) + 1);
611  const float four_qz = 2. * two_qz;
612  q->qi = (RMAT_ELMT(*rm, 0, 1) - RMAT_ELMT(*rm, 1, 0)) / four_qz;
613  q->qx = (RMAT_ELMT(*rm, 2, 0) + RMAT_ELMT(*rm, 0, 2)) / four_qz;
614  q->qy = (RMAT_ELMT(*rm, 1, 2) + RMAT_ELMT(*rm, 2, 1)) / four_qz;
615  q->qz = 0.5 * two_qz;
616  /*printf("m22 largest\n");*/
617  }
618  }
619 }
620 
634 void float_quat_tilt_twist(struct FloatQuat *tilt, struct FloatQuat *twist, struct FloatQuat *quat)
635 {
636  struct FloatVect3 z = {0., 0., 1.};
637  struct FloatVect3 z_rot;
638 
639  // Find the z axis of the target quaternion reference frame
640  struct FloatQuat qinv;
641  float_quat_invert(&qinv, quat);
642  float_quat_vmult(&z_rot, &qinv, &z);
643 
644  // The cross product gives the axis around which to rotate to match the Z vectors.
645  struct FloatVect3 axis;
646  VECT3_CROSS_PRODUCT(axis, z, z_rot);
647 
648  tilt->qi = 1 + z_rot.z;
649  tilt->qx = axis.x;
650  tilt->qy = axis.y;
651  tilt->qz = axis.z;
652 
653  float_quat_normalize(tilt);
654 
655  // The tilt quaternion completes the rotation.
656  float_quat_inv_comp_norm_shortest(twist, tilt, quat);
657 }
658 
659 
660 /*
661  *
662  * Euler angle functions.
663  *
664  */
665 
666 void float_eulers_of_rmat(struct FloatEulers *e, struct FloatRMat *rm)
667 {
668  const float dcm00 = rm->m[0];
669  const float dcm01 = rm->m[1];
670  float dcm02 = rm->m[2];
671  const float dcm12 = rm->m[5];
672  const float dcm22 = rm->m[8];
673 
674  // asinf does not exist outside [-1,1]
675  BoundAbs(dcm02, 1.0);
676 
677  e->phi = atan2f(dcm12, dcm22);
678  e->theta = -asinf(dcm02);
679  e->psi = atan2f(dcm01, dcm00);
680 }
681 
688 void float_eulers_of_quat(struct FloatEulers *e, struct FloatQuat *q)
689 {
690  const float qx2 = q->qx * q->qx;
691  const float qy2 = q->qy * q->qy;
692  const float qz2 = q->qz * q->qz;
693  const float qiqx = q->qi * q->qx;
694  const float qiqy = q->qi * q->qy;
695  const float qiqz = q->qi * q->qz;
696  const float qxqy = q->qx * q->qy;
697  const float qxqz = q->qx * q->qz;
698  const float qyqz = q->qy * q->qz;
699  const float dcm00 = 1.0 - 2.*(qy2 + qz2);
700  const float dcm01 = 2.*(qxqy + qiqz);
701  float dcm02 = 2.*(qxqz - qiqy);
702  const float dcm12 = 2.*(qyqz + qiqx);
703  const float dcm22 = 1.0 - 2.*(qx2 + qy2);
704 
705  // asinf does not exist outside [-1,1]
706  BoundAbs(dcm02, 1.0);
707 
708  e->phi = atan2f(dcm12, dcm22);
709  e->theta = -asinf(dcm02);
710  e->psi = atan2f(dcm01, dcm00);
711 }
712 
723 {
724  const float qx2 = q->qx * q->qx;
725  const float qy2 = q->qy * q->qy;
726  const float qz2 = q->qz * q->qz;
727  const float qi2 = q->qi * q->qi;
728  const float qiqx = q->qi * q->qx;
729  const float qiqy = q->qi * q->qy;
730  const float qiqz = q->qi * q->qz;
731  const float qxqy = q->qx * q->qy;
732  const float qxqz = q->qx * q->qz;
733  const float qyqz = q->qy * q->qz;
734  const float r11 = 2.f * (qxqz + qiqy);
735  const float r12 = qi2 - qx2 + qy2 + qz2;
736  float r21 = -2.f * (qyqz - qiqx);
737  const float r31 = 2.f * (qxqy + qiqz);
738  const float r32 = qi2 - qx2 + qy2 - qz2;
739 
740  // asinf does not exist outside [-1,1]
741  BoundAbs(r21, 1.0);
742 
743  e->theta = atan2f(r11, r12);
744  e->phi = asinf(r21);
745  e->psi = atan2f(r31, r32);
746 }
747 
756 {
757  const float qx2 = q->qx * q->qx;
758  const float qy2 = q->qy * q->qy;
759  const float qz2 = q->qz * q->qz;
760  const float qi2 = q->qi * q->qi;
761  const float qiqx = q->qi * q->qx;
762  const float qiqy = q->qi * q->qy;
763  const float qiqz = q->qi * q->qz;
764  const float qxqy = q->qx * q->qy;
765  const float qxqz = q->qx * q->qz;
766  const float qyqz = q->qy * q->qz;
767  const float r11 = -2 * (qxqy - qiqz);
768  const float r12 = qi2 - qx2 + qy2 - qz2;
769  float r21 = 2 * (qyqz + qiqx);
770  const float r31 = -2 * (qxqz - qiqy);
771  const float r32 = qi2 - qx2 - qy2 + qz2;
772 
773  // asinf does not exist outside [-1,1]
774  BoundAbs(r21, 1.0);
775 
776  e->psi = atan2f(r11, r12);
777  e->phi = asinf(r21);
778  e->theta = atan2f(r31, r32);
779 }
780 
789 bool float_mat_inv_2d(float inv_out[4], float mat_in[4])
790 {
791  float det = mat_in[0] * mat_in[3] - mat_in[1] * mat_in[2];
792 
793  if (fabsf(det) < 1e-4) { return 1; } //not invertible
794 
795  inv_out[0] = mat_in[3] / det;
796  inv_out[1] = -mat_in[1] / det;
797  inv_out[2] = -mat_in[2] / det;
798  inv_out[3] = mat_in[0] / det;
799 
800  return 0; //return success
801 }
802 
810 void float_mat2_mult(struct FloatVect2 *vect_out, float mat[4], struct FloatVect2 vect_in)
811 {
812  vect_out->x = mat[0] * vect_in.x + mat[1] * vect_in.y;
813  vect_out->y = mat[2] * vect_in.x + mat[3] * vect_in.y;
814 }
815 
824 bool float_mat_inv_3d(float inv_out[3][3], float mat_in[3][3])
825 {
826  const float m00 = mat_in[1][1]*mat_in[2][2] - mat_in[1][2]*mat_in[2][1];
827  const float m10 = mat_in[0][1]*mat_in[2][2] - mat_in[0][2]*mat_in[2][1];
828  const float m20 = mat_in[0][1]*mat_in[1][2] - mat_in[0][2]*mat_in[1][1];
829  const float m01 = mat_in[1][0]*mat_in[2][2] - mat_in[1][2]*mat_in[2][0];
830  const float m11 = mat_in[0][0]*mat_in[2][2] - mat_in[0][2]*mat_in[2][0];
831  const float m21 = mat_in[0][0]*mat_in[1][2] - mat_in[0][2]*mat_in[1][0];
832  const float m02 = mat_in[1][0]*mat_in[2][1] - mat_in[1][1]*mat_in[2][0];
833  const float m12 = mat_in[0][0]*mat_in[2][1] - mat_in[0][1]*mat_in[2][0];
834  const float m22 = mat_in[0][0]*mat_in[1][1] - mat_in[0][1]*mat_in[1][0];
835  const float det = mat_in[0][0]*m00 - mat_in[1][0]*m10 + mat_in[2][0]*m20;
836  if (fabs(det) > FLT_EPSILON) {
837  inv_out[0][0] = m00 / det;
838  inv_out[1][0] = -m01 / det;
839  inv_out[2][0] = m02 / det;
840  inv_out[0][1] = -m10 / det;
841  inv_out[1][1] = m11 / det;
842  inv_out[2][1] = -m12 / det;
843  inv_out[0][2] = m20 / det;
844  inv_out[1][2] = -m21 / det;
845  inv_out[2][2] = m22 / det;
846  return 0;
847  }
848  return 1;
849 }
850 
858 void float_mat3_mult(struct FloatVect3 *vect_out, float mat[3][3], struct FloatVect3 vect_in)
859 {
860  vect_out->x = mat[0][0] * vect_in.x + mat[0][1] * vect_in.y + mat[0][2] * vect_in.z;
861  vect_out->y = mat[1][0] * vect_in.x + mat[1][1] * vect_in.y + mat[1][2] * vect_in.z;
862  vect_out->z = mat[2][0] * vect_in.x + mat[2][1] * vect_in.y + mat[2][2] * vect_in.z;
863 }
864 
865 /*
866  * 4x4 Matrix inverse.
867  * obtained from: http://rodolphe-vaillant.fr/?e=7
868  */
869 
870 static float float_mat_minor_4d(float m[4][4], int r0, int r1, int r2, int c0, int c1, int c2)
871 {
872  return m[r0][c0] * (m[r1][c1] * m[r2][c2] - m[r2][c1] * m[r1][c2]) -
873  m[r0][c1] * (m[r1][c0] * m[r2][c2] - m[r2][c0] * m[r1][c2]) +
874  m[r0][c2] * (m[r1][c0] * m[r2][c1] - m[r2][c0] * m[r1][c1]);
875 }
876 
877 
878 static void float_mat_adjoint_4d(float adjOut[4][4], float m[4][4])
879 {
880  adjOut[0][0] = float_mat_minor_4d(m, 1, 2, 3, 1, 2, 3);
881  adjOut[0][1] = -float_mat_minor_4d(m, 0, 2, 3, 1, 2, 3);
882  adjOut[0][2] = float_mat_minor_4d(m, 0, 1, 3, 1, 2, 3);
883  adjOut[0][3] = -float_mat_minor_4d(m, 0, 1, 2, 1, 2, 3);
884  adjOut[1][0] = -float_mat_minor_4d(m, 1, 2, 3, 0, 2, 3);
885  adjOut[1][1] = float_mat_minor_4d(m, 0, 2, 3, 0, 2, 3);
886  adjOut[1][2] = -float_mat_minor_4d(m, 0, 1, 3, 0, 2, 3);
887  adjOut[1][3] = float_mat_minor_4d(m, 0, 1, 2, 0, 2, 3);
888  adjOut[2][0] = float_mat_minor_4d(m, 1, 2, 3, 0, 1, 3);
889  adjOut[2][1] = -float_mat_minor_4d(m, 0, 2, 3, 0, 1, 3);
890  adjOut[2][2] = float_mat_minor_4d(m, 0, 1, 3, 0, 1, 3);
891  adjOut[2][3] = -float_mat_minor_4d(m, 0, 1, 2, 0, 1, 3);
892  adjOut[3][0] = -float_mat_minor_4d(m, 1, 2, 3, 0, 1, 2);
893  adjOut[3][1] = float_mat_minor_4d(m, 0, 2, 3, 0, 1, 2);
894  adjOut[3][2] = -float_mat_minor_4d(m, 0, 1, 3, 0, 1, 2);
895  adjOut[3][3] = float_mat_minor_4d(m, 0, 1, 2, 0, 1, 2);
896 }
897 
898 static float float_mat_det_4d(float m[4][4])
899 {
900  return m[0][0] * float_mat_minor_4d(m, 1, 2, 3, 1, 2, 3) -
901  m[0][1] * float_mat_minor_4d(m, 1, 2, 3, 0, 2, 3) +
902  m[0][2] * float_mat_minor_4d(m, 1, 2, 3, 0, 1, 3) -
903  m[0][3] * float_mat_minor_4d(m, 1, 2, 3, 0, 1, 2);
904 }
905 
912 bool float_mat_inv_4d(float invOut[4][4], float mat_in[4][4])
913 {
914  float_mat_adjoint_4d(invOut, mat_in);
915 
916  float det = float_mat_det_4d(mat_in);
917  if (fabsf(det) < 1e-4) { return 1; } //not invertible
918 
919  float inv_det = 1.0f / det;
920  int i;
921  for (i = 0; i < 4; ++i) {
922  invOut[0][i] = invOut[0][i] * inv_det;
923  invOut[1][i] = invOut[1][i] * inv_det;
924  invOut[2][i] = invOut[2][i] * inv_det;
925  invOut[3][i] = invOut[3][i] * inv_det;
926  }
927 
928  return 0; //success
929 }
930 
935 void float_mat_invert(float **o, float **mat, int n)
936 {
937  int i, j, k;
938  float t;
939  float a[n][2 * n];
940 
941  // Append an identity matrix on the right of the original matrix
942  for (i = 0; i < n; i++) {
943  for (j = 0; j < 2 * n; j++) {
944  if (j < n) {
945  a[i][j] = mat[i][j];
946  } else if ((j >= n) && (j == i + n)) {
947  a[i][j] = 1.0;
948  } else {
949  a[i][j] = 0.0;
950  }
951  }
952  }
953 
954  // Do the inversion
955  for (i = 0; i < n; i++) {
956  t = a[i][i]; // Store diagonal variable (temp)
957 
958  for (j = i; j < 2 * n; j++) {
959  a[i][j] = a[i][j] / t; // Divide by the diagonal value
960  }
961 
962  for (j = 0; j < n; j++) {
963  if (i != j) {
964  t = a[j][i];
965  for (k = 0; k < 2 * n; k++) {
966  a[j][k] = a[j][k] - t * a[i][k];
967  }
968  }
969  }
970  }
971 
972  // Cut out the identity, which has now moved to the left side
973  for (i = 0 ; i < n ; i++) {
974  for (j = n; j < 2 * n; j++) {
975  o[i][j - n] = a[i][j];
976  }
977  }
978 }
979 
980 /*
981  * o[n][n] = e^a[n][n]
982  * Replicates expm(a) in Matlab
983  *
984  * Adapted from the following reference:
985  * Cleve Moler, Charles VanLoan,
986  * Nineteen Dubious Ways to Compute the Exponential of a Matrix,
987  * Twenty-Five Years Later, SIAM Review, Volume 45, Number 1, March 2003, pages 3-49.
988  * https://people.sc.fsu.edu/~jburkardt/c_src/matrix_exponential/matrix_exponential.c
989  */
990 void float_mat_exp(float **a, float **o, int n)
991 {
992  float a_norm, c, t;
993  const int q = 6;
994  float d[n][n];
995  float x[n][n];
996  float a_copy[n][n];
997  int ee, k, s;
998  int p;
999 
1000  MAKE_MATRIX_PTR(_a, a, n);
1001  MAKE_MATRIX_PTR(_o, o, n);
1002  MAKE_MATRIX_PTR(_d, d, n);
1003  MAKE_MATRIX_PTR(_x, x, n);
1004  MAKE_MATRIX_PTR(_a_copy, a_copy, n);
1005 
1006  float_mat_copy(_a_copy, _a, n, n); // Make a copy of a to compute on
1007  a_norm = float_mat_norm_li(_a_copy, n, n); // Compute the infinity norm of the matrix
1008  ee = (int)(float_log_n(a_norm, 2)) + 1;
1009  s = Max(0, ee + 1);
1010  t = 1.0 / powf(2.0, s);
1011  float_mat_scale(_a_copy, t, n, n);
1012  float_mat_copy(_x, _a_copy, n, n); // x = a_copy
1013  c = 0.5;
1014 
1015  float_mat_diagonal_scal(_o, 1.0, n); // make identiy
1016  float_mat_sum_scaled(_o, _a_copy, c, n, n);
1017 
1018  float_mat_diagonal_scal(_d, 1.0, n);
1019  float_mat_sum_scaled(_d, _a_copy, -c, n, n);
1020 
1021  p = 1;
1022  for (k = 2; k <= q; k++) {
1023  c = c * (float)(q - k + 1) / (float)(k * (2 * q - k + 1));
1024  float_mat_mul_copy(_x, _x, _a_copy, n, n, n);
1025 
1026  float_mat_sum_scaled(_o, _x, c, n, n);
1027 
1028  if (p) {
1029  float_mat_sum_scaled(_d, _x, c, n, n);
1030  } else {
1031  float_mat_sum_scaled(_d, _x, -c, n, n);
1032  }
1033  p = !p;
1034  }
1035 
1036  // E -> inverse(D) * E
1037  float temp[n][n];
1038  MAKE_MATRIX_PTR(_temp, temp, n);
1039  float_mat_invert(_temp, _d, n);
1040  float_mat_mul_copy(_o, _temp, _o, n, n, n);
1041 
1042  // E -> E^(2*S)
1043  for (k = 1; k <= s; k++) {
1044  float_mat_mul_copy(_o, _o, _o, n, n, n);
1045  }
1046 
1047 }
1048 
1049 /* Returns L-oo of matrix a */
1050 float float_mat_norm_li(float **a, int m, int n)
1051 {
1052  float row_sum;
1053  float value;
1054 
1055  value = 0.0;
1056  for (int i = 0; i < m; i++) {
1057  row_sum = 0.0;
1058  for (int j = 0; j < n; j++) {
1059  row_sum = row_sum + fabsf(a[i][j]);
1060  }
1061  value = Max(value, row_sum);
1062  }
1063  return value;
1064 }
1065 
1066 /* Scale a 3D vector to within a 2D bound */
1067 void float_vect3_bound_in_2d(struct FloatVect3 *vect3, float bound) {
1068  float norm = FLOAT_VECT2_NORM(*vect3);
1069  if (norm > bound) {
1070  float scale = bound / norm;
1071  vect3->x *= scale;
1072  vect3->y *= scale;
1073  }
1074 }
1075 
1076 /* Scale a 3D vector to within a 3D bound */
1077 void float_vect3_bound_in_3d(struct FloatVect3 *vect3, float bound) {
1078  float norm = FLOAT_VECT3_NORM(*vect3);
1079  if(norm>bound) {
1080  float scale = bound/norm;
1081  vect3->x *= scale;
1082  vect3->y *= scale;
1083  vect3->z *= scale;
1084  }
1085 }
1086 
1087 /* Scale a 3D vector to a certain length in 2D */
1088 void float_vect3_scale_in_2d(struct FloatVect3 *vect3, float norm_des) {
1089  float norm = FLOAT_VECT2_NORM(*vect3);
1090  if (norm > 0.01f) {
1091  float scale = norm_des / norm;
1092  vect3->x *= scale;
1093  vect3->y *= scale;
1094  }
1095 }
1096 
1097 /* Scale a 2D vector to within a 2D bound */
1098 void float_vect2_bound_in_2d(struct FloatVect2 *vect2, float bound) {
1099  float norm = FLOAT_VECT2_NORM(*vect2);
1100  if (norm > bound) {
1101  float scale = bound / norm;
1102  vect2->x *= scale;
1103  vect2->y *= scale;
1104  }
1105 }
1106 
1107 /* Scale a 2D vector to a certain length in 2D */
1108 void float_vect2_scale_in_2d(struct FloatVect2 *vect2, float norm_des) {
1109  float norm = FLOAT_VECT2_NORM(*vect2);
1110  if (norm > 0.01f) {
1111  float scale = norm_des / norm;
1112  vect2->x *= scale;
1113  vect2->y *= scale;
1114  }
1115 }
static uint16_t c1
Definition: baro_MS5534A.c:203
static uint16_t c2
Definition: baro_MS5534A.c:203
static const float scale[]
float q
in rad/s
float phi
in radians
float p
in rad/s
float r
in rad/s
float theta
in radians
float m[3 *3]
float psi
in radians
void float_rmat_of_eulers_321(struct FloatRMat *rm, struct FloatEulers *e)
Rotation matrix from 321 Euler angles (float).
static void float_quat_normalize(struct FloatQuat *q)
void float_vect3_integrate_fi(struct FloatVect3 *vec, struct FloatVect3 *dv, float dt)
in place first order integration of a 3D-vector
void float_rmat_mult(struct FloatEulers *rb, struct FloatRMat *m_a2b, struct FloatEulers *ra)
rotate angle by rotation matrix.
void float_quat_of_axis_angle(struct FloatQuat *q, const struct FloatVect3 *uv, float angle)
Quaternion from unit vector and angle.
float float_rmat_reorthogonalize(struct FloatRMat *rm)
void float_quat_comp_norm_shortest(struct FloatQuat *a2c, struct FloatQuat *a2b, struct FloatQuat *b2c)
Composition (multiplication) of two quaternions with normalization.
void float_mat3_mult(struct FloatVect3 *vect_out, float mat[3][3], struct FloatVect3 vect_in)
Multiply 3D matrix with vector.
void float_quat_inv_comp_norm_shortest(struct FloatQuat *b2c, struct FloatQuat *a2b, struct FloatQuat *a2c)
Composition (multiplication) of two quaternions with normalization.
void float_eulers_of_quat_yxz(struct FloatEulers *e, struct FloatQuat *q)
euler rotation 'YXZ' This function calculates from a quaternion the Euler angles with the order YXZ,...
void float_vect3_scale_in_2d(struct FloatVect3 *vect3, float norm_des)
void float_vect3_bound_in_2d(struct FloatVect3 *vect3, float bound)
void float_quat_inv_comp(struct FloatQuat *b2c, struct FloatQuat *a2b, struct FloatQuat *a2c)
Composition (multiplication) of two quaternions.
void float_vect2_scale_in_2d(struct FloatVect2 *vect2, float norm_des)
void float_quat_of_rmat(struct FloatQuat *q, struct FloatRMat *rm)
Quaternion from rotation matrix.
void float_quat_of_eulers_zxy(struct FloatQuat *q, struct FloatEulers *e)
quat from euler rotation 'ZXY' This rotation order is useful if you need 90 deg pitch
void float_rmat_transp_mult(struct FloatEulers *rb, struct FloatRMat *m_b2a, struct FloatEulers *ra)
rotate angle by transposed rotation matrix.
void float_quat_comp_inv(struct FloatQuat *a2b, struct FloatQuat *a2c, struct FloatQuat *b2c)
Composition (multiplication) of two quaternions.
void float_rmat_comp_inv(struct FloatRMat *m_a2b, struct FloatRMat *m_a2c, struct FloatRMat *m_b2c)
Composition (multiplication) of two rotation matrices.
#define FLOAT_RATES_NORM(_v)
void float_rmat_ratemult(struct FloatRates *rb, struct FloatRMat *m_a2b, struct FloatRates *ra)
rotate anglular rates by rotation matrix.
void float_rmat_of_eulers_312(struct FloatRMat *rm, struct FloatEulers *e)
void float_rmat_of_quat(struct FloatRMat *rm, struct FloatQuat *q)
void float_rmat_inv(struct FloatRMat *m_b2a, struct FloatRMat *m_a2b)
Inverse/transpose of a rotation matrix.
void float_rmat_comp(struct FloatRMat *m_a2c, struct FloatRMat *m_a2b, struct FloatRMat *m_b2c)
Composition (multiplication) of two rotation matrices.
bool float_mat_inv_2d(float inv_out[4], float mat_in[4])
2x2 matrix inverse
void float_vect2_bound_in_2d(struct FloatVect2 *vect2, float bound)
void float_quat_integrate(struct FloatQuat *q, struct FloatRates *omega, float dt)
in place quaternion integration with constant rotational velocity
void float_quat_derivative_lagrange(struct FloatQuat *qd, struct FloatRates *r, struct FloatQuat *q)
Quaternion derivative from rotational velocity.
#define M_SQRT2
void float_vect3_bound_in_3d(struct FloatVect3 *vect3, float bound)
static void float_mat_sum_scaled(float **a, float **b, float k, int m, int n)
a += k*b, where k is a scalar value
void float_quat_comp_inv_norm_shortest(struct FloatQuat *a2b, struct FloatQuat *a2c, struct FloatQuat *b2c)
Composition (multiplication) of two quaternions with normalization.
static void float_mat_mul_copy(float **o, float **a, float **b, int m, int n, int l)
o = a * b
static void float_mat_copy(float **a, float **b, int m, int n)
a = b
void float_quat_of_eulers_yxz(struct FloatQuat *q, struct FloatEulers *e)
quat from euler rotation 'YXZ' This function calculates a quaternion from Euler angles with the order...
void float_rmat_integrate_fi(struct FloatRMat *rm, struct FloatRates *omega, float dt)
in place first order integration of a rotation matrix
void float_rates_of_euler_dot(struct FloatRates *r, struct FloatEulers *e, struct FloatEulers *edot)
float float_mat_norm_li(float **a, int m, int n)
static void float_quat_wrap_shortest(struct FloatQuat *q)
#define FLOAT_VECT3_NORM(_v)
void float_eulers_of_quat_zxy(struct FloatEulers *e, struct FloatQuat *q)
euler rotation 'ZXY' This rotation order is useful if you need 90 deg pitch
void float_quat_of_orientation_vect(struct FloatQuat *q, const struct FloatVect3 *ov)
Quaternion from orientation vector.
bool float_mat_inv_3d(float inv_out[3][3], float mat_in[3][3])
3x3 matrix inverse
void float_quat_of_eulers(struct FloatQuat *q, struct FloatEulers *e)
quat of euler roation 'ZYX'
void float_rates_integrate_fi(struct FloatRates *r, struct FloatRates *dr, float dt)
in place first order integration of angular rates
void float_rmat_transp_ratemult(struct FloatRates *rb, struct FloatRMat *m_b2a, struct FloatRates *ra)
rotate anglular rates by transposed rotation matrix.
void float_quat_vmult(struct FloatVect3 *v_out, struct FloatQuat *q, const struct FloatVect3 *v_in)
rotate 3D vector by quaternion.
float float_rmat_norm(struct FloatRMat *rm)
Norm of a rotation matrix.
void float_eulers_of_rmat(struct FloatEulers *e, struct FloatRMat *rm)
#define MAKE_MATRIX_PTR(_ptr, _mat, _rows)
Make a pointer to a matrix of _rows lines.
void float_mat_invert(float **o, float **mat, int n)
Calculate inverse of any n x n matrix (passed as C array) o = mat^-1 Algorithm verified with Matlab.
void float_quat_tilt_twist(struct FloatQuat *tilt, struct FloatQuat *twist, struct FloatQuat *quat)
Tilt twist decomposition of a quaternion (z axis)
void float_rmat_transp_vmult(struct FloatVect3 *vb, struct FloatRMat *m_b2a, struct FloatVect3 *va)
rotate 3D vector by transposed rotation matrix.
void float_eulers_of_quat(struct FloatEulers *e, struct FloatQuat *q)
euler rotation 'ZYX'
static void float_quat_invert(struct FloatQuat *qo, struct FloatQuat *qi)
bool float_mat_inv_4d(float invOut[4][4], float mat_in[4][4])
4x4 Matrix inverse
void float_quat_integrate_fi(struct FloatQuat *q, struct FloatRates *omega, float dt)
in place first order quaternion integration with constant rotational velocity
void float_mat2_mult(struct FloatVect2 *vect_out, float mat[4], struct FloatVect2 vect_in)
Multiply 2D matrix with vector.
#define FLOAT_VECT2_NORM(_v)
void float_mat_exp(float **a, float **o, int n)
static float float_log_n(float v, float n)
void float_rmat_of_axis_angle(struct FloatRMat *rm, struct FloatVect3 *uv, float angle)
initialises a rotation matrix from unit vector axis and angle
void float_quat_comp(struct FloatQuat *a2c, struct FloatQuat *a2b, struct FloatQuat *b2c)
Composition (multiplication) of two quaternions.
static void float_mat_diagonal_scal(float **o, float v, int n)
Make an n x n identity matrix (for matrix passed as array)
void float_quat_differential(struct FloatQuat *q_out, struct FloatRates *w, float dt)
Delta rotation quaternion with constant angular rates.
void float_rmat_vmult(struct FloatVect3 *vb, struct FloatRMat *m_a2b, struct FloatVect3 *va)
rotate 3D vector by rotation matrix.
static float float_quat_norm(struct FloatQuat *q)
static void float_mat_scale(float **a, float k, int m, int n)
a *= k, where k is a scalar value
void float_quat_derivative(struct FloatQuat *qd, struct FloatRates *r, struct FloatQuat *q)
Quaternion derivative from rotational velocity.
euler angles
Roation quaternion.
rotation matrix
angular rates
#define RMAT_TRACE(_rm)
Definition: pprz_algebra.h:663
#define SQUARE(_a)
Definition: pprz_algebra.h:48
#define VECT3_CROSS_PRODUCT(_vo, _v1, _v2)
Definition: pprz_algebra.h:244
#define VECT3_NORM2(_v)
Definition: pprz_algebra.h:252
#define RMAT_ELMT(_rm, _row, _col)
Definition: pprz_algebra.h:660
#define MAT33_ROW_VECT3_SMUL(_mat, _row, _vin, _s)
Definition: pprz_algebra.h:514
#define VECT3_SUM_SCALED(_c, _a, _b, _s)
Definition: pprz_algebra.h:175
#define VECT3_DOT_PRODUCT(_v1, _v2)
Definition: pprz_algebra.h:250
static float p[2][2]
static uint32_t s
static float renorm_factor(float n)
static void float_mat_adjoint_4d(float adjOut[4][4], float m[4][4])
static float float_mat_det_4d(float m[4][4])
static float float_mat_minor_4d(float m[4][4], int r0, int r1, int r2, int c0, int c1, int c2)
Paparazzi floating point algebra.