81 if (pyramid_level == 0) {
126 if (
LVL == pyramid_level) {
249 for (
int8_t i = pyramid_level; i != -1; i--) {
342 int32_t Det = (G[0] * G[3] - G[1] * G[2]) / subpixel_factor;
void image_subpixel_window(struct image_t *input, struct image_t *output, struct point_t *center, uint32_t subpixel_factor, uint8_t border_size)
This outputs a subpixel window image in grayscale Currently only works with Grayscale images as input...
void image_gradients(struct image_t *input, struct image_t *dx, struct image_t *dy)
Calculate the gradients using the following matrix: [0 -1 0; -1 0 1; 0 1 0].
void pyramid_build(struct image_t *input, struct image_t *output_array, uint8_t pyr_level, uint16_t border_size)
This function populates given array of image_t structs with wanted number of padded pyramids based on...
uint32_t image_difference(struct image_t *img_a, struct image_t *img_b, struct image_t *diff)
Calculate the difference between two images and return the error This will only work with grayscale i...
void image_free(struct image_t *img)
Free the image.
void image_create(struct image_t *img, uint16_t width, uint16_t height, enum image_type type)
Create a new image.
void image_calculate_g(struct image_t *dx, struct image_t *dy, int32_t *g)
Calculate the G vector of an image gradient This is used for optical flow calculation.
int32_t image_multiply(struct image_t *img_a, struct image_t *img_b, struct image_t *mult)
Calculate the multiplication between two images and return the error This will only work with image g...
uint32_t x
The x coordinate of the point.
@ IMAGE_GRAYSCALE
Grayscale image with only the Y part (uint8 per pixel)
@ IMAGE_GRADIENT
An image gradient (int16 per pixel)
struct flow_t * opticFlowLK(struct image_t *new_img, struct image_t *old_img, struct point_t *points, uint16_t *points_cnt, uint16_t half_window_size, uint16_t subpixel_factor, uint8_t max_iterations, uint8_t step_threshold, uint8_t max_points, uint8_t pyramid_level, uint8_t keep_bad_points)
struct flow_t * opticFlowLK_flat(struct image_t *new_img, struct image_t *old_img, struct point_t *points, uint16_t *points_cnt, uint16_t half_window_size, uint16_t subpixel_factor, uint8_t max_iterations, uint8_t step_threshold, uint16_t max_points, uint8_t keep_bad_points)
Compute the optical flow of several points using the Lucas-Kanade algorithm by Yves Bouguet The initi...
efficient fixed-point optical-flow calculation
unsigned short uint16_t
Typedef defining 16 bit unsigned short type.
int int32_t
Typedef defining 32 bit int type.
unsigned int uint32_t
Typedef defining 32 bit unsigned int type.
short int16_t
Typedef defining 16 bit short type.
unsigned char uint8_t
Typedef defining 8 bit unsigned char type.
signed char int8_t
Typedef defining 8 bit char type.