86 for (
int k = 0; k <
D; k++) {
98 for (
int j = 0;
j < count;
j++) {
120 for (
int d = 0; d <
D_1; d++) {
138 for (
int w = 0; w <
D; w++) {
165 index =
rand() % count;
167 for (
int k = 0; k <
j; k++) {
float predict_value(float *sample, float *weights, int D, bool use_bias)
Predict the value of a sample with linear weights.
void get_indices_without_replacement(int *indices_subset, int n_samples, int count)
Get indices without replacement.
void RANSAC_linear_model(int n_samples, int n_iterations, float error_threshold, float *targets, int D, float(*samples)[D], uint16_t count, bool use_bias, float *params, float *fit_error)
Perform RANSAC to fit a linear model.
Perform Random Sample Consensus (RANSAC), a robust fitting method.
Paparazzi floating point algebra.
void fit_linear_model(float *targets, int D, float(*samples)[D], uint16_t count, bool use_bias, float *params, float *fit_error)
Fit a linear model from samples to target values.
Matrix decompositions in floating point.
unsigned short uint16_t
Typedef defining 16 bit unsigned short type.
unsigned char uint8_t
Typedef defining 8 bit unsigned char type.