80 m_a2c->
m[0] = m_b2c->
m[0] * m_a2b->
m[0] + m_b2c->
m[1] * m_a2b->
m[3] + m_b2c->
m[2] * m_a2b->
m[6];
81 m_a2c->
m[1] = m_b2c->
m[0] * m_a2b->
m[1] + m_b2c->
m[1] * m_a2b->
m[4] + m_b2c->
m[2] * m_a2b->
m[7];
82 m_a2c->
m[2] = m_b2c->
m[0] * m_a2b->
m[2] + m_b2c->
m[1] * m_a2b->
m[5] + m_b2c->
m[2] * m_a2b->
m[8];
83 m_a2c->
m[3] = m_b2c->
m[3] * m_a2b->
m[0] + m_b2c->
m[4] * m_a2b->
m[3] + m_b2c->
m[5] * m_a2b->
m[6];
84 m_a2c->
m[4] = m_b2c->
m[3] * m_a2b->
m[1] + m_b2c->
m[4] * m_a2b->
m[4] + m_b2c->
m[5] * m_a2b->
m[7];
85 m_a2c->
m[5] = m_b2c->
m[3] * m_a2b->
m[2] + m_b2c->
m[4] * m_a2b->
m[5] + m_b2c->
m[5] * m_a2b->
m[8];
86 m_a2c->
m[6] = m_b2c->
m[6] * m_a2b->
m[0] + m_b2c->
m[7] * m_a2b->
m[3] + m_b2c->
m[8] * m_a2b->
m[6];
87 m_a2c->
m[7] = m_b2c->
m[6] * m_a2b->
m[1] + m_b2c->
m[7] * m_a2b->
m[4] + m_b2c->
m[8] * m_a2b->
m[7];
88 m_a2c->
m[8] = m_b2c->
m[6] * m_a2b->
m[2] + m_b2c->
m[7] * m_a2b->
m[5] + m_b2c->
m[8] * m_a2b->
m[8];
96 m_a2b->
m[0] = m_b2c->
m[0] * m_a2c->
m[0] + m_b2c->
m[3] * m_a2c->
m[3] + m_b2c->
m[6] * m_a2c->
m[6];
97 m_a2b->
m[1] = m_b2c->
m[0] * m_a2c->
m[1] + m_b2c->
m[3] * m_a2c->
m[4] + m_b2c->
m[6] * m_a2c->
m[7];
98 m_a2b->
m[2] = m_b2c->
m[0] * m_a2c->
m[2] + m_b2c->
m[3] * m_a2c->
m[5] + m_b2c->
m[6] * m_a2c->
m[8];
99 m_a2b->
m[3] = m_b2c->
m[1] * m_a2c->
m[0] + m_b2c->
m[4] * m_a2c->
m[3] + m_b2c->
m[7] * m_a2c->
m[6];
100 m_a2b->
m[4] = m_b2c->
m[1] * m_a2c->
m[1] + m_b2c->
m[4] * m_a2c->
m[4] + m_b2c->
m[7] * m_a2c->
m[7];
101 m_a2b->
m[5] = m_b2c->
m[1] * m_a2c->
m[2] + m_b2c->
m[4] * m_a2c->
m[5] + m_b2c->
m[7] * m_a2c->
m[8];
102 m_a2b->
m[6] = m_b2c->
m[2] * m_a2c->
m[0] + m_b2c->
m[5] * m_a2c->
m[3] + m_b2c->
m[8] * m_a2c->
m[6];
103 m_a2b->
m[7] = m_b2c->
m[2] * m_a2c->
m[1] + m_b2c->
m[5] * m_a2c->
m[4] + m_b2c->
m[8] * m_a2c->
m[7];
104 m_a2b->
m[8] = m_b2c->
m[2] * m_a2c->
m[2] + m_b2c->
m[5] * m_a2c->
m[5] + m_b2c->
m[8] * m_a2c->
m[8];
112 vb->
x = m_a2b->
m[0] * va->
x + m_a2b->
m[1] * va->
y + m_a2b->
m[2] * va->
z;
113 vb->
y = m_a2b->
m[3] * va->
x + m_a2b->
m[4] * va->
y + m_a2b->
m[5] * va->
z;
114 vb->
z = m_a2b->
m[6] * va->
x + m_a2b->
m[7] * va->
y + m_a2b->
m[8] * va->
z;
122 vb->
x = m_b2a->
m[0] * va->
x + m_b2a->
m[3] * va->
y + m_b2a->
m[6] * va->
z;
123 vb->
y = m_b2a->
m[1] * va->
x + m_b2a->
m[4] * va->
y + m_b2a->
m[7] * va->
z;
124 vb->
z = m_b2a->
m[2] * va->
x + m_b2a->
m[5] * va->
y + m_b2a->
m[8] * va->
z;
132 rb->
p = m_a2b->
m[0] * ra->
p + m_a2b->
m[1] * ra->
q + m_a2b->
m[2] * ra->
r;
133 rb->
q = m_a2b->
m[3] * ra->
p + m_a2b->
m[4] * ra->
q + m_a2b->
m[5] * ra->
r;
134 rb->
r = m_a2b->
m[6] * ra->
p + m_a2b->
m[7] * ra->
q + m_a2b->
m[8] * ra->
r;
142 rb->
p = m_b2a->
m[0] * ra->
p + m_b2a->
m[3] * ra->
q + m_b2a->
m[6] * ra->
r;
143 rb->
q = m_b2a->
m[1] * ra->
p + m_b2a->
m[4] * ra->
q + m_b2a->
m[7] * ra->
r;
144 rb->
r = m_b2a->
m[2] * ra->
p + m_b2a->
m[5] * ra->
q + m_b2a->
m[8] * ra->
r;
151 const float ux2 = uv->
x * uv->
x;
152 const float uy2 = uv->
y * uv->
y;
153 const float uz2 = uv->
z * uv->
z;
154 const float uxuy = uv->
x * uv->
y;
155 const float uyuz = uv->
y * uv->
z;
156 const float uxuz = uv->
x * uv->
z;
157 const float can = cosf(angle);
158 const float san = sinf(angle);
159 const float one_m_can = (1. - can);
161 RMAT_ELMT(*rm, 0, 0) = ux2 + (1. - ux2) * can;
162 RMAT_ELMT(*rm, 0, 1) = uxuy * one_m_can + uv->
z * san;
163 RMAT_ELMT(*rm, 0, 2) = uxuz * one_m_can - uv->
y * san;
165 RMAT_ELMT(*rm, 1, 1) = uy2 + (1. - uy2) * can;
166 RMAT_ELMT(*rm, 1, 2) = uyuz * one_m_can + uv->
x * san;
169 RMAT_ELMT(*rm, 2, 2) = uz2 + (1. - uz2) * can;
176 const float sphi = sinf(e->
phi);
177 const float cphi = cosf(e->
phi);
178 const float stheta = sinf(e->
theta);
179 const float ctheta = cosf(e->
theta);
180 const float spsi = sinf(e->
psi);
181 const float cpsi = cosf(e->
psi);
186 RMAT_ELMT(*rm, 1, 0) = sphi * stheta * cpsi - cphi * spsi;
187 RMAT_ELMT(*rm, 1, 1) = sphi * stheta * spsi + cphi * cpsi;
189 RMAT_ELMT(*rm, 2, 0) = cphi * stheta * cpsi + sphi * spsi;
190 RMAT_ELMT(*rm, 2, 1) = cphi * stheta * spsi - sphi * cpsi;
196 const float sphi = sinf(e->
phi);
197 const float cphi = cosf(e->
phi);
198 const float stheta = sinf(e->
theta);
199 const float ctheta = cosf(e->
theta);
200 const float spsi = sinf(e->
psi);
201 const float cpsi = cosf(e->
psi);
203 RMAT_ELMT(*rm, 0, 0) = ctheta * cpsi - sphi * stheta * spsi;
204 RMAT_ELMT(*rm, 0, 1) = ctheta * spsi + sphi * stheta * cpsi;
209 RMAT_ELMT(*rm, 2, 0) = stheta * cpsi + sphi * ctheta * spsi;
210 RMAT_ELMT(*rm, 2, 1) = stheta * spsi - sphi * ctheta * cpsi;
222 const float a2_1 = _a * _a - 1;
223 const float ab = _a * _b;
224 const float ac = _a * _c;
225 const float ad = _a * _d;
226 const float bc = _b * _c;
227 const float bd = _b * _d;
228 const float cd = _c * _d;
245 1. , dt *omega->
r, -dt *omega->
q,
246 -dt *omega->
r, 1. , dt *omega->
p,
247 dt *omega->
q, -dt *omega->
p, 1.
252 memcpy(rm, &R_tdt,
sizeof(R_tdt));
257 if (n < 1.5625f && n > 0.64f) {
259 }
else if (n < 100.0f && n > 0.01f) {
260 return 1. / sqrtf(n);
302 a2c->
qi = a2b->
qi * b2c->
qi - a2b->
qx * b2c->
qx - a2b->
qy * b2c->
qy - a2b->
qz * b2c->
qz;
303 a2c->
qx = a2b->
qi * b2c->
qx + a2b->
qx * b2c->
qi + a2b->
qy * b2c->
qz - a2b->
qz * b2c->
qy;
304 a2c->
qy = a2b->
qi * b2c->
qy - a2b->
qx * b2c->
qz + a2b->
qy * b2c->
qi + a2b->
qz * b2c->
qx;
305 a2c->
qz = a2b->
qi * b2c->
qz + a2b->
qx * b2c->
qy - a2b->
qy * b2c->
qx + a2b->
qz * b2c->
qi;
310 a2b->
qi = a2c->
qi * b2c->
qi + a2c->
qx * b2c->
qx + a2c->
qy * b2c->
qy + a2c->
qz * b2c->
qz;
311 a2b->
qx = -a2c->
qi * b2c->
qx + a2c->
qx * b2c->
qi - a2c->
qy * b2c->
qz + a2c->
qz * b2c->
qy;
312 a2b->
qy = -a2c->
qi * b2c->
qy + a2c->
qx * b2c->
qz + a2c->
qy * b2c->
qi - a2c->
qz * b2c->
qx;
313 a2b->
qz = -a2c->
qi * b2c->
qz - a2c->
qx * b2c->
qy + a2c->
qy * b2c->
qx + a2c->
qz * b2c->
qi;
318 b2c->
qi = a2b->
qi * a2c->
qi + a2b->
qx * a2c->
qx + a2b->
qy * a2c->
qy + a2b->
qz * a2c->
qz;
319 b2c->
qx = a2b->
qi * a2c->
qx - a2b->
qx * a2c->
qi - a2b->
qy * a2c->
qz + a2b->
qz * a2c->
qy;
320 b2c->
qy = a2b->
qi * a2c->
qy + a2b->
qx * a2c->
qz - a2b->
qy * a2c->
qi - a2b->
qz * a2c->
qx;
321 b2c->
qz = a2b->
qi * a2c->
qz - a2b->
qx * a2c->
qy + a2b->
qy * a2c->
qx - a2b->
qz * a2c->
qi;
347 const float v_norm = sqrtf(w->
p * w->
p + w->
q * w->
q + w->
r * w->
r);
348 const float c2 = cos(dt * v_norm / 2.0);
349 const float s2 = sin(dt * v_norm / 2.0);
357 q_out->
qx = w->
p / v_norm * s2;
358 q_out->
qy = w->
q / v_norm * s2;
359 q_out->
qz = w->
r / v_norm * s2;
366 const float qi = q->
qi;
367 const float qx = q->
qx;
368 const float qy = q->
qy;
369 const float qz = q->
qz;
370 const float dp = 0.5 * dt * omega->
p;
371 const float dq = 0.5 * dt * omega->
q;
372 const float dr = 0.5 * dt * omega->
r;
373 q->
qi = qi - dp * qx - dq * qy - dr * qz;
374 q->
qx = dp * qi + qx + dr * qy - dq * qz;
375 q->
qy = dq * qi - dr * qx + qy + dp * qz;
376 q->
qz = dr * qi + dq * qx - dp * qy + qz;
384 const float a = 0.5 * no * dt;
385 const float ca = cosf(a);
386 const float sa_ov_no = sinf(a) / no;
387 const float dp = sa_ov_no * omega->
p;
388 const float dq = sa_ov_no * omega->
q;
389 const float dr = sa_ov_no * omega->
r;
390 const float qi = q->
qi;
391 const float qx = q->
qx;
392 const float qy = q->
qy;
393 const float qz = q->
qz;
394 q->
qi = ca * qi - dp * qx - dq * qy - dr * qz;
395 q->
qx = dp * qi + ca * qx + dr * qy - dq * qz;
396 q->
qy = dq * qi - dr * qx + ca * qy + dp * qz;
397 q->
qz = dr * qi + dq * qx - dp * qy + ca * qz;
403 const float qi2_M1_2 = q->
qi * q->
qi - 0.5;
404 const float qiqx = q->
qi * q->
qx;
405 const float qiqy = q->
qi * q->
qy;
406 const float qiqz = q->
qi * q->
qz;
407 float m01 = q->
qx * q->
qy;
408 float m02 = q->
qx * q->
qz;
409 float m12 = q->
qy * q->
qz;
411 const float m00 = qi2_M1_2 + q->
qx * q->
qx;
412 const float m10 = m01 - qiqz;
413 const float m20 = m02 + qiqy;
414 const float m21 = m12 - qiqx;
418 const float m11 = qi2_M1_2 + q->
qy * q->
qy;
419 const float m22 = qi2_M1_2 + q->
qz * q->
qz;
420 v_out->
x = 2 * (m00 * v_in->
x + m01 * v_in->
y + m02 * v_in->
z);
421 v_out->
y = 2 * (m10 * v_in->
x + m11 * v_in->
y + m12 * v_in->
z);
422 v_out->
z = 2 * (m20 * v_in->
x + m21 * v_in->
y + m22 * v_in->
z);
432 qd->
qi = -0.5 * (r->
p * q->
qx + r->
q * q->
qy + r->
r * q->
qz);
433 qd->
qx = -0.5 * (-r->
p * q->
qi - r->
r * q->
qy + r->
q * q->
qz);
434 qd->
qy = -0.5 * (-r->
q * q->
qi + r->
r * q->
qx - r->
p * q->
qz);
435 qd->
qz = -0.5 * (-r->
r * q->
qi - r->
q * q->
qx + r->
p * q->
qy);
443 const float K_LAGRANGE = 1.;
445 qd->
qi = -0.5 * (c * q->
qi + r->
p * q->
qx + r->
q * q->
qy + r->
r * q->
qz);
446 qd->
qx = -0.5 * (-r->
p * q->
qi + c * q->
qx - r->
r * q->
qy + r->
q * q->
qz);
447 qd->
qy = -0.5 * (-r->
q * q->
qi + r->
r * q->
qx + c * q->
qy - r->
p * q->
qz);
448 qd->
qz = -0.5 * (-r->
r * q->
qi - r->
q * q->
qx + r->
p * q->
qy + c * q->
qz);
454 const float phi2 = e->
phi / 2.0;
455 const float theta2 = e->
theta / 2.0;
456 const float psi2 = e->
psi / 2.0;
458 const float s_phi2 = sinf(phi2);
459 const float c_phi2 = cosf(phi2);
460 const float s_theta2 = sinf(theta2);
461 const float c_theta2 = cosf(theta2);
462 const float s_psi2 = sinf(psi2);
463 const float c_psi2 = cosf(psi2);
465 q->
qi = c_phi2 * c_theta2 * c_psi2 + s_phi2 * s_theta2 * s_psi2;
466 q->
qx = -c_phi2 * s_theta2 * s_psi2 + s_phi2 * c_theta2 * c_psi2;
467 q->
qy = c_phi2 * s_theta2 * c_psi2 + s_phi2 * c_theta2 * s_psi2;
468 q->
qz = c_phi2 * c_theta2 * s_psi2 - s_phi2 * s_theta2 * c_psi2;
473 const float san = sinf(angle / 2.);
474 q->
qi = cosf(angle / 2.);
482 const float ov_norm = sqrtf(ov->
x * ov->
x + ov->
y * ov->
y + ov->
z * ov->
z);
483 if (ov_norm < 1e-8) {
489 const float s2_normalized = sinf(ov_norm / 2.0) / ov_norm;
490 q->
qi = cosf(ov_norm / 2.0);
491 q->
qx = ov->
x * s2_normalized;
492 q->
qy = ov->
y * s2_normalized;
493 q->
qz = ov->
z * s2_normalized;
501 const float two_qi = sqrtf(1. + tr);
502 const float four_qi = 2. * two_qi;
503 q->
qi = 0.5 * two_qi;
513 const float four_qx = 2. * two_qx;
515 q->
qx = 0.5 * two_qx;
522 const float four_qy = 2. * two_qy;
525 q->
qy = 0.5 * two_qy;
531 const float four_qz = 2. * two_qz;
535 q->
qz = 0.5 * two_qz;
550 const float dcm00 = rm->
m[0];
551 const float dcm01 = rm->
m[1];
552 const float dcm02 = rm->
m[2];
553 const float dcm12 = rm->
m[5];
554 const float dcm22 = rm->
m[8];
555 e->
phi = atan2f(dcm12, dcm22);
556 e->
theta = -asinf(dcm02);
557 e->
psi = atan2f(dcm01, dcm00);
562 const float qx2 = q->
qx * q->
qx;
563 const float qy2 = q->
qy * q->
qy;
564 const float qz2 = q->
qz * q->
qz;
565 const float qiqx = q->
qi * q->
qx;
566 const float qiqy = q->
qi * q->
qy;
567 const float qiqz = q->
qi * q->
qz;
568 const float qxqy = q->
qx * q->
qy;
569 const float qxqz = q->
qx * q->
qz;
570 const float qyqz = q->
qy * q->
qz;
571 const float dcm00 = 1.0 - 2.*(qy2 + qz2);
572 const float dcm01 = 2.*(qxqy + qiqz);
573 const float dcm02 = 2.*(qxqz - qiqy);
574 const float dcm12 = 2.*(qyqz + qiqx);
575 const float dcm22 = 1.0 - 2.*(qx2 + qy2);
577 e->
phi = atan2f(dcm12, dcm22);
578 e->
theta = -asinf(dcm02);
579 e->
psi = atan2f(dcm01, dcm00);
#define VECT3_CROSS_PRODUCT(_vo, _v1, _v2)
#define VECT3_DOT_PRODUCT(_v1, _v2)
void float_quat_comp_inv(struct FloatQuat *a2b, struct FloatQuat *a2c, struct FloatQuat *b2c)
Composition (multiplication) of two quaternions.
#define FLOAT_RATES_NORM(_v)
void float_rmat_inv(struct FloatRMat *m_b2a, struct FloatRMat *m_a2b)
Inverse/transpose of a rotation matrix.
void float_quat_of_eulers(struct FloatQuat *q, struct FloatEulers *e)
Quaternion from Euler angles.
void float_quat_comp(struct FloatQuat *a2c, struct FloatQuat *a2b, struct FloatQuat *b2c)
Composition (multiplication) of two quaternions.
void float_vect3_integrate_fi(struct FloatVect3 *vec, struct FloatVect3 *dv, float dt)
in place first order integration of a 3D-vector
void float_eulers_of_rmat(struct FloatEulers *e, struct FloatRMat *rm)
float float_rmat_norm(struct FloatRMat *rm)
Norm of a rotation matrix.
#define VECT3_SUM_SCALED(_c, _a, _b, _s)
void float_rmat_comp_inv(struct FloatRMat *m_a2b, struct FloatRMat *m_a2c, struct FloatRMat *m_b2c)
Composition (multiplication) of two rotation matrices.
void float_quat_inv_comp(struct FloatQuat *b2c, struct FloatQuat *a2b, struct FloatQuat *a2c)
Composition (multiplication) of two quaternions.
void float_rmat_integrate_fi(struct FloatRMat *rm, struct FloatRates *omega, float dt)
in place first order integration of a rotation matrix
void float_rmat_of_eulers_312(struct FloatRMat *rm, struct FloatEulers *e)
void float_rmat_vmult(struct FloatVect3 *vb, struct FloatRMat *m_a2b, struct FloatVect3 *va)
rotate 3D vector by rotation matrix.
void float_rmat_comp(struct FloatRMat *m_a2c, struct FloatRMat *m_a2b, struct FloatRMat *m_b2c)
Composition (multiplication) of two rotation matrices.
void float_rmat_transp_vmult(struct FloatVect3 *vb, struct FloatRMat *m_b2a, struct FloatVect3 *va)
rotate 3D vector by transposed rotation matrix.
Paparazzi floating point algebra.
void float_rates_integrate_fi(struct FloatRates *r, struct FloatRates *dr, float dt)
in place first order integration of angular rates
void float_rmat_of_quat(struct FloatRMat *rm, struct FloatQuat *q)
void float_quat_integrate(struct FloatQuat *q, struct FloatRates *omega, float dt)
in place quaternion integration with constant rotational velocity
void float_quat_vmult(struct FloatVect3 *v_out, struct FloatQuat *q, const struct FloatVect3 *v_in)
rotate 3D vector by quaternion.
static void float_quat_normalize(struct FloatQuat *q)
void float_quat_comp_inv_norm_shortest(struct FloatQuat *a2b, struct FloatQuat *a2c, struct FloatQuat *b2c)
Composition (multiplication) of two quaternions with normalization.
void float_quat_of_rmat(struct FloatQuat *q, struct FloatRMat *rm)
Quaternion from rotation matrix.
static float renorm_factor(float n)
#define MAT33_ROW_VECT3_SMUL(_mat, _row, _vin, _s)
void float_rates_of_euler_dot(struct FloatRates *r, struct FloatEulers *e, struct FloatEulers *edot)
void float_quat_derivative(struct FloatQuat *qd, struct FloatRates *r, struct FloatQuat *q)
Quaternion derivative from rotational velocity.
float float_rmat_reorthogonalize(struct FloatRMat *rm)
void float_rmat_transp_ratemult(struct FloatRates *rb, struct FloatRMat *m_b2a, struct FloatRates *ra)
rotate anglular rates by transposed rotation matrix.
void float_rmat_of_eulers_321(struct FloatRMat *rm, struct FloatEulers *e)
Rotation matrix from 321 Euler angles (float).
void float_rmat_of_axis_angle(struct FloatRMat *rm, struct FloatVect3 *uv, float angle)
initialises a rotation matrix from unit vector axis and angle
#define RMAT_ELMT(_rm, _row, _col)
void float_quat_of_orientation_vect(struct FloatQuat *q, const struct FloatVect3 *ov)
Quaternion from orientation vector.
void float_quat_of_axis_angle(struct FloatQuat *q, const struct FloatVect3 *uv, float angle)
Quaternion from unit vector and angle.
static void float_quat_wrap_shortest(struct FloatQuat *q)
void float_quat_comp_norm_shortest(struct FloatQuat *a2c, struct FloatQuat *a2b, struct FloatQuat *b2c)
Composition (multiplication) of two quaternions with normalization.
void float_quat_inv_comp_norm_shortest(struct FloatQuat *b2c, struct FloatQuat *a2b, struct FloatQuat *a2c)
Composition (multiplication) of two quaternions with normalization.
void float_quat_derivative_lagrange(struct FloatQuat *qd, struct FloatRates *r, struct FloatQuat *q)
Quaternion derivative from rotational velocity.
static float float_quat_norm(struct FloatQuat *q)
void float_rmat_ratemult(struct FloatRates *rb, struct FloatRMat *m_a2b, struct FloatRates *ra)
rotate anglular rates by rotation matrix.
#define FLOAT_RMAT_COMP(_m_a2c, _m_a2b, _m_b2c)
void float_quat_differential(struct FloatQuat *q_out, struct FloatRates *w, float dt)
Delta rotation quaternion with constant angular rates.
void float_eulers_of_quat(struct FloatEulers *e, struct FloatQuat *q)
void float_quat_integrate_fi(struct FloatQuat *q, struct FloatRates *omega, float dt)
in place first order quaternion integration with constant rotational velocity